Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.

作者: James A. Coffman , John J. McCarthy , Carrie Dickey-Sims , Anthony J. Robertson

DOI: 10.1016/J.YDBIO.2004.06.005

关键词: BotanyMitochondrionEmbryoNODALCell biologyZygoteEctodermSea urchinOral/aboral axis specificationBiologyStrongylocentrotus purpuratus

摘要: The initial asymmetry that specifies the oral–aboral (OA) axis of sea urchin embryo has long been a mystery. It was shown previously OA polarity can be entrained in embryos by imposing respiratory asymmetry, with most oxidizing side tending to develop as oral pole. This suggests one earliest observable asymmetries along incipient axis, redox gradient established higher density and/or activity mitochondria on prospective embryo, might play causal role establishing axis. Here, we examine origin and functional significance this early gradient. Using MitoTracker Green, show are asymmetrically distributed unfertilized egg Strongylocentrotus purpuratus, maternal is maintained zygote. Vital staining indicates inherits highest tends into correlation holds when redistributed centrifugation eggs or transfer purified zygotes, indicating an asymmetric mitochondrial distribution entrain polarity, possibly through effects intracellular state. In support possibility, find specification ectoderm suppressed cultured under hypoxic conditions enforce relatively reducing effect reversed overexpression nodal, zygotic marker whose localized expression suffices organize entire state upstream nodal expression. We therefore propose threshold level oxidation required effectively activate precocious attainment within blastomeres containing results consequent

参考文章(80)
James A. Coffman, Eric H. Davidson, Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Developmental Biology. ,vol. 230, pp. 18- 28 ,(2001) , 10.1006/DBIO.2000.9996
A.H. Myrset, A. Bostad, N. Jamin, P.N. Lirsac, F. Toma, O.S. Gabrielsen, DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. The EMBO Journal. ,vol. 12, pp. 4625- 4633 ,(1993) , 10.1002/J.1460-2075.1993.TB06151.X
R A Laing, J Fischbarg, B Chance, Noninvasive measurements of pyridine nucleotide fluorescence from the cornea. Investigative Ophthalmology & Visual Science. ,vol. 19, pp. 96- 102 ,(1980)
Sally A. Moody, Cell lineage and fate determination Academic Press. ,(1999)
Eric H. Davidson, Gene activity in early development ,(1968)
Carmen V. Kirchhamer, Eric H. Davidson, James A. Coffman, Michael G. Harrington, SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos Development. ,vol. 124, pp. 4717- 4727 ,(1997) , 10.1242/DEV.124.23.4717
Barbara R. Hough-Evans, Roberta R. Franks, Eric H. Davidson, Robert W. Zeller, Roy J. Britten, Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo. Development. ,vol. 110, pp. 41- 50 ,(1990) , 10.1242/DEV.110.1.41
Frank J. Calzone, Ann E. Cutting, Eric H. Davidson, Robert W. Zeller, Roy J. Britten, David B. Teplow, Christer Höög, Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein Development. ,vol. 112, pp. 335- 350 ,(1991)
Andrew P. McMahon, Constantin N. Flytzanis, Barbara R. Hough-Evans, Karen S. Katula, Roy J. Britten, Eric H. Davidson, Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. Developmental Biology. ,vol. 108, pp. 420- 430 ,(1985) , 10.1016/0012-1606(85)90045-4
Koji Akasaka, Hiroko Uemoto, Fred Wilt, Keiko Mitsunaga-Nakatsubo, Hiraku Shimada, Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore. Development Growth & Differentiation. ,vol. 39, pp. 373- 379 ,(1997) , 10.1046/J.1440-169X.1997.T01-2-00013.X