A spatial zero-inflated poisson regression model for oak regeneration

作者: Stephen L. Rathbun , Songlin Fei

DOI: 10.1007/S10651-006-0020-X

关键词: Zero-inflated modelEconometricsPoisson regressionMathematicsPoisson distributionRegression analysisSpatial dependenceProbit modelStatisticsSpecies distributionGeneralized linear model

摘要: Ecological counts data are often characterized by an excess of zeros and spatial dependence. Excess can occur in regions outside the range dis- tribution a given species. A zero-inflated Poisson regression model is developed, under which species determined probit model, including physical variables as covariates. Within that range, independently drawn from distribution whose mean depends on biotic variables. Bayesian inference for this illustrated using oak seedling counts.

参考文章(36)
Michael L. Stein, Interpolation of Spatial Data Springer New York. ,(1999) , 10.1007/978-1-4612-1494-6
Deepak K. Agarwal, Alan E. Gelfand, Steven Citron-Pousty, Zero-inflated models with application to spatial count data Environmental and Ecological Statistics. ,vol. 9, pp. 341- 355 ,(2002) , 10.1023/A:1020910605990
G. E. P. Box, Mervin E. Muller, A Note on the Generation of Random Normal Deviates Annals of Mathematical Statistics. ,vol. 29, pp. 610- 611 ,(1958) , 10.1214/AOMS/1177706645
RONALD CHRISTENSEN, WESLEY JOHNSON, LARRY M. PEARSON, Prediction diagnostics for spatial linear models Biometrika. ,vol. 79, pp. 583- 591 ,(1992) , 10.1093/BIOMET/79.3.583
Robert E. Kass, Bradley P. Carlin, Andrew Gelman, Radford M. Neal, Markov Chain Monte Carlo in Practice: A Roundtable Discussion The American Statistician. ,vol. 52, pp. 93- 100 ,(1998) , 10.1080/00031305.1998.10480547
A. M. C. Vieira, J. P. Hinde, C. G. B. Demetrio, Zero-inflated proportion data models applied to a biological control assay Journal of Applied Statistics. ,vol. 27, pp. 373- 389 ,(2000) , 10.1080/02664760021673
Lee W. Schruben, Detecting Initialization Bias in Simulation Output Operations Research. ,vol. 30, pp. 569- 590 ,(1982) , 10.1287/OPRE.30.3.569