作者: W. L. McMillan
关键词: Monte Carlo method in statistical physics 、 Monte Carlo method 、 Square-lattice Ising model 、 Absolute zero 、 Dynamic Monte Carlo method 、 Spin glass 、 Phase transition 、 Condensed matter physics 、 Physics 、 Ising model
摘要: A Monte Carlo simulation of the two-dimensional random ($\ifmmode\pm\else\textpm\fi{}J$) Ising model has characterized equilibrium and dynamic behavior model. The spin-glass correlation length diverges algebraically with absolute temperature. equilibration time obeys an Arrhenius law at low There is a "phase transition zero temperature" glass finite In frequency ($f$) regime noise power spectrum proportional to $\frac{1}{{f}^{(1+\ensuremath{\alpha})}}$ $\ensuremath{\alpha}=0.28$.