Overcoming bias in gene-set enrichment analyses of brain-wide transcriptomic data

作者: Ben D. Fulcher , Aurina Arnatkevičiūtė , Alex Fornito

DOI: 10.1101/2020.04.24.058958

关键词: Transcriptional activitySet (psychology)Null (SQL)BiologyCell densitySpatial analysisTranscriptomeGeneComputational biologyPhenotype

摘要: The recent availability of whole-brain atlases gene expression, which quantify the transcriptional activity thousands genes across many different brain regions, has opened new opportunities to understand how gene-expression patterns relate spatially varying properties structure and function. To aid interpretation a given neural phenotype, gene-set enrichment analysis (GSEA) become standard statistical methodology identify functionally related groups genes, annotated using systems such as Gene Ontology (GO), that are associated with phenotype. While GSEA identified diverse aspects function in mouse human, here we show these results affected by substantial biases. Quantifying false-positive rates individual GO categories an ensemble random phenotypic maps, found average 875-fold inflation significant findings relative expectation mouse, 582-fold some being judged for over 20% phenotypes. Concerningly, probability category reported extant literature increases its estimated rate, suggesting published reports strongly reporting bias. We bias is primarily driven within-category gene--gene coexpression spatial autocorrelation, not accounted conventional nulls, introduce flexible ensemble-based null models can account effects. Testing range structural connectivity cell density phenotypes demonstrate would conventionally be highly fact consistent ensembles Our highlight major pitfalls applying brain-wide transcriptomic data outline solutions this pervasive problem, made available open toolbox.

参考文章(122)
H. Motenko, S. B. Neuhauser, M. O’Keefe, J. E. Richardson, MouseMine: a new data warehouse for MGI. Mammalian Genome. ,vol. 26, pp. 325- 330 ,(2015) , 10.1007/S00335-015-9573-Z
Robert E. Smith, Jacques-Donald Tournier, Fernando Calamante, Alan Connelly, SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography NeuroImage. ,vol. 119, pp. 338- 351 ,(2015) , 10.1016/J.NEUROIMAGE.2015.06.092
James A. Roberts, Alistair Perry, Anton R. Lord, Gloria Roberts, Philip B. Mitchell, Robert E. Smith, Fernando Calamante, Michael Breakspear, The contribution of geometry to the human connectome NeuroImage. ,vol. 124, pp. 379- 393 ,(2016) , 10.1016/J.NEUROIMAGE.2015.09.009
Jonas Richiardi, Andre Altmann, Anna-Clare Milazzo, Catie Chang, M Mallar Chakravarty, Tobias Banaschewski, Gareth J Barker, Arun LW Bokde, Uli Bromberg, Christian Büchel, Patricia Conrod, Mira Fauth-Bühler, Herta Flor, Vincent Frouin, Jürgen Gallinat, Hugh Garavan, Penny Gowland, Andreas Heinz, Hervé Lemaître, Karl F Mann, Jean-Luc Martinot, Frauke Nees, Tomáš Paus, Zdenka Pausova, Marcella Rietschel, Trevor W Robbins, Michael N Smolka, Rainer Spanagel, Andreas Ströhle, Gunter Schumann, Mike Hawrylycz, Jean-Baptiste Poline, Michael D Greicius, Lisa Albrecht, Chris Andrew, Mercedes Arroyo, Eric Artiges, Semiha Aydin, Christine Bach, Alexis Barbot, Gareth Barker, Nathalie Boddaert, Arun Bokde, Zuleima Bricaud, Ruediger Bruehl, Arnaud Cachia, Anna Cattrell, Patrick Constant, Jeffrey Dalley, Benjamin Decideur, Sylvane Desrivieres, Tahmine Fadai, Fanny Gollier Briand, Bert Heinrichs, Nadja Heym, Thomas Hübner, James Ireland, Bernd Ittermann, Tianye Jia, Mark Lathrop, Dirk Lanzerath, Claire Lawrence, Hervé Lemaitre, Katharina Lüdemann, Christine Macare, Catherine Mallik, Jean-François Mangin, Karl Mann, Eva Mennigen, Fabiana Mesquita de Carvahlo, Xavier Mignon, Ruben Miranda, Kathrin Müller, Charlotte Nymberg, Marie-Laure Paillere, Tomas Paus, Luise Poustka, Michael Rapp, Gabriel Robert, Jan Reuter, Stephan Ripke, Trevor Robbins, Sarah Rodehacke, John Rogers, Alexander Romanowski, Barbara Ruggeri, Christine Schmäl, Dirk Schmidt, Sophia Schneider, MarkGunter Schumann, Florian Schubert, Yannick Schwartz, Michael Smolka, Wolfgang Sommer, Claudia Speiser, Tade Spranger, Alicia Stedman, Sabina Steiner, Dai Stephens, Nicole Strache, Maren Struve, Naresh Subramaniam, Lauren Topper, Robert Whelan, Steve Williams, Juliana Yacubian, Monica Zilbovicius, C Peng Wong, Steven Lubbe, Lourdes Martinez-Medina, Alinda Fernandes, Amir Tahmasebi, IMAGEN consortium, None, Correlated gene expression supports synchronous activity in brain networks Science. ,vol. 348, pp. 1241- 1244 ,(2015) , 10.1126/SCIENCE.1255905
Leon French, Tomáš Paus, A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas Frontiers in Neuroscience. ,vol. 9, pp. 323- 323 ,(2015) , 10.3389/FNINS.2015.00323
Mikail Rubinov, Rolf J. F. Ypma, Charles Watson, Edward T. Bullmore, Wiring cost and topological participation of the mouse brain connectome. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 10032- 10037 ,(2015) , 10.1073/PNAS.1420315112
Pragya Goel, Amy Kuceyeski, Eve LoCastro, Ashish Raj, Spatial patterns of genome-wide expression profiles reflect anatomic and fiber connectivity architecture of healthy human brain Human Brain Mapping. ,vol. 35, pp. 4204- 4218 ,(2014) , 10.1002/HBM.22471
D. Tomasi, G.-J. Wang, N. D. Volkow, Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 13642- 13647 ,(2013) , 10.1073/PNAS.1303346110
J. W. Lichtman, W. Denk, The big and the small: challenges of imaging the brain's circuits. Science. ,vol. 334, pp. 618- 623 ,(2011) , 10.1126/SCIENCE.1209168