The best of both worlds: Phylogenetic eigenvector regression and mapping.

作者: José Alexandre Felizola Diniz Filho , Fabricio Villalobos , Luis Mauricio Bini

DOI: 10.1590/S1415-475738320140391

关键词: Multidimensional scalingRegressionBiologyPattern recognitionPhylogenetic comparative methodsArtificial intelligenceEigenfunctionPhylogenetic treeAutocorrelationPhylogeneticsBioinformaticsPairwise comparison

摘要: Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), which pairwise distances among species are submitted Principal Coordinate Analysis, eigenvectors then as explanatory variables regression, correlation or ANOVAs. More recently, new approach Mapping (PEM) was proposed, with the main advantage explicitly incorporating model-based warping distance an Ornstein-Uhlenbeck (O-U) process is fitted data before eigenvector extraction. Here we compared PVR PEM respect estimated signal, correlated evolution under alternative evolutionary models imputation, using simulated data. Despite similarity between two approaches, has slightly higher prediction ability more general than original PVR. Even so, conceptual sense, may provide technique best both worlds, combining flexibility data-driven empirical eigenfunction sounding insights provided by well known comparative analyses.

参考文章(23)
Kamran Safi, Nathalie Pettorelli, Phylogenetic, spatial and environmental components of extinction risk in carnivores Global Ecology and Biogeography. ,vol. 19, pp. 352- 362 ,(2010) , 10.1111/J.1466-8238.2010.00523.X
José Alexandre Felizola Diniz Filho, Thiago F. Rangel, Thiago Santos, Luis Mauricio Bini, Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution. ,vol. 66, pp. 1079- 1090 ,(2012) , 10.1111/J.1558-5646.2011.01499.X
Jose Alexandre F. Diniz-Filho, Luis Mauricio Bini, Thiago Fernando Rangel, Ignacio Morales-Castilla, Miguel Á. Olalla-Tárraga, Miguel Á. Rodríguez, Bradford A. Hawkins, On the selection of phylogenetic eigenvectors for ecological analyses Ecography. ,vol. 35, pp. 239- 249 ,(2012) , 10.1111/J.1600-0587.2011.06949.X
F. Guillaume Blanchet, Pierre Legendre, Daniel Borcard, FORWARD SELECTION OF EXPLANATORY VARIABLES Ecology. ,vol. 89, pp. 2623- 2632 ,(2008) , 10.1890/07-0986.1
Nathan G. Swenson, Phylogenetic imputation of plant functional trait databases Ecography. ,vol. 37, pp. 105- 110 ,(2014) , 10.1111/J.1600-0587.2013.00528.X
Guillaume Guénard, Pierre Legendre, Pedro Peres-Neto, Phylogenetic eigenvector maps: a framework to model and predict species traits Methods in Ecology and Evolution. ,vol. 4, pp. 1120- 1131 ,(2013) , 10.1111/2041-210X.12111
Daniel A. Griffith, Pedro R. Peres-Neto, SPATIAL MODELING IN ECOLOGY: THE FLEXIBILITY OF EIGENFUNCTION SPATIAL ANALYSES Ecology. ,vol. 87, pp. 2603- 2613 ,(2006) , 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
Rob P. Freckleton, Natalie Cooper, Walter Jetz, Comparative Methods as a Statistical Fix: The Dangers of Ignoring an Evolutionary Model The American Naturalist. ,vol. 178, ,(2011) , 10.1086/660272
Caterina Penone, Ana D. Davidson, Kevin T. Shoemaker, Moreno Di Marco, Carlo Rondinini, Thomas M. Brooks, Bruce E. Young, Catherine H. Graham, Gabriel C. Costa, Imputation of missing data in life-history trait datasets: which approach performs the best? Methods in Ecology and Evolution. ,vol. 5, pp. 961- 970 ,(2014) , 10.1111/2041-210X.12232
Pedro R. Peres-Neto, Mathew A. Leibold, Stéphane Dray, Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics Ecology. ,vol. 93, ,(2012) , 10.1890/11-0494.1