A periodic solution of period two of a delay differential equation

作者: Yukihiko Nakata

DOI:

关键词: Order (ring theory)Delay differential equationOrdinary differential equationMathematicsMathematical physicsPeriod (periodic table)Jacobi elliptic functionsIntegrable system

摘要: In this paper we prove that the following delay differential equation \[ \frac{d}{dt}x(t)=rx(t)\left(1-\int_{0}^{1}x(t-s)ds\right), \] has a periodic solution of period two for $r>\frac{\pi^{2}}{2}$ (when steady state, $x=1$, is unstable). order to find solution, study an integrable system ordinary equations, idea by Kaplan and Yorke \cite{Kaplan=000026Yorke:1974}. The expressed in terms Jacobi elliptic functions.

参考文章(20)
Paul F. Byrd, Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists ,(2014)
Kenneth R. Meyer, Jacobi Elliptic Functions from a Dynamical Systems Point of View American Mathematical Monthly. ,vol. 108, pp. 729- 737 ,(2001) , 10.1080/00029890.2001.11919804
Roger D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations Annali di Matematica Pura ed Applicata. ,vol. 101, pp. 263- 306 ,(1974) , 10.1007/BF02417109
Herbert W. Hethcote, Harlan W. Stech, P. Van Den Driessche, NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS Siam Journal on Applied Mathematics. ,vol. 40, pp. 1- 9 ,(1981) , 10.1137/0140001
S. Gonçalves, M. F. C. Gomes, G. Abramson, Oscillations in SIRS model with distributed delays European Physical Journal B. ,vol. 81, pp. 363- 371 ,(2011) , 10.1140/EPJB/E2011-20054-9
H. Rasmussen, G.C. Wake, J. Donaldson, Analysis of a class of distributed delay logistic differential equations Mathematical and Computer Modelling. ,vol. 38, pp. 123- 132 ,(2003) , 10.1016/S0895-7177(03)90010-0
James L. Kaplan, James A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations Journal of Mathematical Analysis and Applications. ,vol. 48, pp. 317- 324 ,(1974) , 10.1016/0022-247X(74)90162-0
Jean-Philippe Lessard, Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation Journal of Differential Equations. ,vol. 248, pp. 992- 1016 ,(2010) , 10.1016/J.JDE.2009.11.008