作者: David Cruz-Uribe , José María Martell , Carlos Pérez
DOI: 10.1142/9789814699693_0006
关键词: Mathematics 、 Diagonal 、 Haar 、 Discrete mathematics 、 Maximal operator 、 Maximal function 、 Operator (computer programming) 、 Bounded function 、 Conjecture
摘要: We obtain the off-diagonal Muckenhoupt-Wheeden conjecture for Calderon-Zygmund operators. Namely, given 1 < p q ∞ and a pair of weights (u, v), if Hardy-Littlewood maximal function satisfies following two weight inequalities: M : L(v) → L(u) L ′ (u ) (v ), then any operator T its associated truncated T? are bounded from (v) to L(u). Additionally, assuming only second estimate map continuously into Lq,∞(u). also consider case generalized Haar shift operators show that their estimates governed by corresponding dyadic function.