Reduced Genus-One Gromov-Witten Invariants

作者: Aleksey Zinger

DOI:

关键词: Moduli spaceComponent (group theory)GeneralizationSymplectic geometryPure mathematicsGenus (mathematics)Fundamental classMathematicsSymplectic manifold

摘要: In a previous paper we described natural closed subset of the moduli space stable genus-one J-holomorphic maps into symplectic manifold X. this generalize definition main component to spaces perturbed, in restricted way, maps. This generalization implies that component, just like entire space, carries virtual fundamental class and can be used define invariants. These truly invariants constitute part standard Gromov-Witten invariants, which arise from space. The new are more geometric compute GW-invariants complete intersections, as shown separate paper.

参考文章(9)
Jun Li, Aleksey Zinger, On the genus-one Gromov-Witten invariants of complete intersections Journal of Differential Geometry. ,vol. 82, pp. 641- 690 ,(2009) , 10.4310/JDG/1251122549
Yongbin Ruan, Gang Tian, A mathematical theory of quantum cohomology Journal of Differential Geometry. ,vol. 42, pp. 259- 367 ,(1995) , 10.4310/JDG/1214457234
Aleksey Zinger, Enumerative vs.\ symplectic invariants and obstruction bundles Journal of Symplectic Geometry. ,vol. 2, pp. 445- 543 ,(2004) , 10.4310/JSG.2004.V2.N4.A1
R. Pandharipande, Hodge Integrals and Degenerate Contributions Communications in Mathematical Physics. ,vol. 208, pp. 489- 506 ,(1999) , 10.1007/S002200050766
Kenji Fukaya, Kaoru Ono, ARNOLD CONJECTURE AND GROMOV–WITTEN INVARIANT Topology. ,vol. 38, pp. 933- 1048 ,(1999) , 10.1016/S0040-9383(98)00042-1
Philip Candelas, Xenia C. De La Ossa, Paul S. Green, Linda Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory Nuclear Physics. ,vol. 359, pp. 21- 74 ,(1991) , 10.1016/0550-3213(91)90292-6
K. Behrend, B. Fantechi, The intrinsic normal cone Inventiones Mathematicae. ,vol. 128, pp. 45- 88 ,(1997) , 10.1007/S002220050136