Maximally Modulated Singular Integral Operators and their Applications to Pseudodifferential Operators on Banach Function Spaces

作者: Alexei Yu. Karlovich

DOI:

关键词: Bounded operatorCombinatoricsSpace (mathematics)Bounded functionCompact spaceFunction spaceBanach algebraDiscrete mathematicsLp spaceMathematicsSeparable space

摘要: We prove that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space $X(\mathbb{R}^n)$ and its associate $X'(\mathbb{R}^n)$ maximally modulated Calder\'on-Zygmund singular integral $T^\Phi$ of weak type $(r,r)$ for all $r\in(1,\infty)$, then extends to $X(\mathbb{R}^n)$. This theorem implies boundedness Hilbert transform variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R})$ under natural assumptions exponent $p:\mathbb{R}\to(1,\infty)$. Applications above result compactness pseudodifferential operators with $L^\infty(\mathbb{R},V(\mathbb{R}))$-symbols are considered. Here algebra $L^\infty(\mathbb{R},V(\mathbb{R}))$ consists measurable $V(\mathbb{R})$-valued functions $\mathbb{R}$ where $V(\mathbb{R})$ total variation.

参考文章(13)
Petteri Harjulehto, Lars Diening, Michael Ruzicka, Peter Hästö, Lebesgue and Sobolev Spaces with Variable Exponents ,(2011)
Camil Muscalu, Wilhelm Schlag, Classical and Multilinear Harmonic Analysis ,(2013)
M Sharpley, C. Bennett, Interpolation of operators ,(1987)
Andrei K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable L p spaces Mathematische Zeitschrift. ,vol. 251, pp. 509- 521 ,(2005) , 10.1007/S00209-005-0818-5
Fernando Cobos, Thomas Kühn, Tomas Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors Journal of Functional Analysis. ,vol. 106, pp. 274- 313 ,(1992) , 10.1016/0022-1236(92)90049-O
Loukas Grafakos, Jos� Mar�a Martell, Fernando Soria, Weighted norm inequalities for maximally modulated singular integral operators Mathematische Annalen. ,vol. 331, pp. 359- 394 ,(2005) , 10.1007/S00208-004-0586-2
C. Fefferman, E. M. Stein, H p spaces of several variables Acta Mathematica. ,vol. 129, pp. 137- 193 ,(1972) , 10.1007/BF02392215
Peter D. Lax, Theory of Functions of a Real Variable The Mathematical Gazette. ,vol. 43, pp. 225- ,(1959) , 10.2307/3610997