A COMPARISON BETWEEN PARAMETRIC AND NON-PARAMETRIC APPROACHES TO THE ANALYSIS OF REPLICATED SPATIAL POINT PATTERNS

作者: Peter J. Diggle , Jorge Mateu , Helen E. Clough

DOI: 10.1239/AAP/1013540166

关键词: Parametric modelContext (language use)Nonparametric statisticsStatisticsMeasure (mathematics)Point processMathematicsParametric statisticsData analysisK-function

摘要: The paper compares non-parametric (design-based) and parametric (model-based) approaches to the analysis of data in form replicated spatial point patterns two or more experimental groups. Basic questions for this kind concern estimating properties underlying process within each group, comparing between A approach, building on work by Diggle et. al. (1991), summarizes pattern an estimate reduced second moment measure K-function (Ripley (1977)) mean K-functions groups using a bootstrap testing procedure. approach fits particular classes model data, uses parameter estimates as summaries tests differences with without assumption common values across discusses how either can be implemented specific context single-factor experiment simulations show efficient when assumptions hold, but potentially misleading otherwise.

参考文章(25)
Yosihiko Ogata, Masaharu Tanemura, Likelihood Analysis of Spatial Point Patterns Journal of the royal statistical society series b-methodological. ,vol. 46, pp. 496- 518 ,(1984) , 10.1111/J.2517-6161.1984.TB01322.X
B. D. Ripley, Simulating Spatial Patterns: Dependent Samples from a Multivariate Density Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 28, pp. 109- 112 ,(1979) , 10.2307/2346831
F. P. KELLY, B. D. REPLEY, A note on Strauss's model for clustering Biometrika. ,vol. 63, pp. 357- 360 ,(1976) , 10.1093/BIOMET/63.2.357
Peter J. Diggle, Thomas Fiksel, Pavel Grabarnik, Yosihiko Ogata, Dietrich Stoyan, Masaharu Tanemura, On Parameter Estimation for Pairwise Interaction Point Processes International Statistical Review / Revue Internationale de Statistique. ,vol. 62, pp. 99- 117 ,(1994) , 10.2307/1403548
B. D. Ripley, F. P. Kelly, Markov Point Processes Journal of the London Mathematical Society. ,vol. s2-15, pp. 188- 192 ,(1977) , 10.1112/JLMS/S2-15.1.188
V. Howard, S. Reid, A. Baddeley, A. Boyde, Unbiased estimation of particle density in the tandem scanning reflected light microscope. Journal of Microscopy. ,vol. 138, pp. 203- 212 ,(1985) , 10.1111/J.1365-2818.1985.TB02613.X
David J. Gates, Mark Westcott, Clustering estimates for spatial point distributions with unstable potentials Annals of the Institute of Statistical Mathematics. ,vol. 38, pp. 123- 135 ,(1986) , 10.1007/BF02482505
D. J. STRAUSS, A model for clustering Biometrika. ,vol. 62, pp. 467- 475 ,(1975) , 10.1093/BIOMET/62.2.467
D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes Probability and Its Applications. ,vol. 85, pp. 262- ,(2008) , 10.1007/978-0-387-49835-5