作者: J P Prentis
DOI: 10.1088/0305-4470/18/14/002
关键词: Zero (complex analysis) 、 Mathematical physics 、 Function (mathematics) 、 Lévy flight 、 Critical exponent 、 Mathematics 、 Scaling 、 Exponent 、 Field (physics) 、 Probability density function
摘要: The self-avoiding Levy flight (SALF) in d dimensions with exponent mu is formulated as a geometrical equilibrium statistical mechanical problem. A direct renormalisation theory, based on modern field theoretic techniques, used to derive the critical exponents and end-to-end distance probability function through first order epsilon =2 -d. non-perturbative structure of characterised by universal scaling function. SALF represents simple many-body system that can assume continuum values near zero.