Renormalisation theory of the self-avoiding Levy flight

作者: J P Prentis

DOI: 10.1088/0305-4470/18/14/002

关键词: Zero (complex analysis)Mathematical physicsFunction (mathematics)Lévy flightCritical exponentMathematicsScalingExponentField (physics)Probability density function

摘要: The self-avoiding Levy flight (SALF) in d dimensions with exponent mu is formulated as a geometrical equilibrium statistical mechanical problem. A direct renormalisation theory, based on modern field theoretic techniques, used to derive the critical exponents and end-to-end distance probability function through first order epsilon =2 -d. non-perturbative structure of characterised by universal scaling function. SALF represents simple many-body system that can assume continuum values near zero.

参考文章(13)
Hiromi Yamakawa, Modern Theory of Polymer Solutions Harper & Row. pp. 1- 434 ,(1971)
B. D. Hughes, M. F. Shlesinger, E. W. Montroll, Random walks with self-similar clusters. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 78, pp. 3287- 3291 ,(1981) , 10.1073/PNAS.78.6.3287
J. J. Prentis, Spatial correlations in a self-repelling ring polymer Journal of Chemical Physics. ,vol. 76, pp. 1574- 1583 ,(1982) , 10.1063/1.443118
P Grassberger, Critical exponents of self-avoiding Levy flights Journal of Physics A. ,vol. 18, ,(1985) , 10.1088/0305-4470/18/8/011
Michael E. Fisher, Shang-keng Ma, B. G. Nickel, Critical Exponents for Long-Range Interactions Physical Review Letters. ,vol. 29, pp. 917- 920 ,(1972) , 10.1103/PHYSREVLETT.29.917
Benoît B. Mandelbrot, Fractals: Form, Chance and Dimension ,(1977)
V. Seshadri, B. J. West, Fractal dimensionality of Lévy processes. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 79, pp. 4501- 4505 ,(1982) , 10.1073/PNAS.79.14.4501
Michael F. Shlesinger, Weierstrassian Levy flights and self‐avoiding random walks The Journal of Chemical Physics. ,vol. 78, pp. 416- 419 ,(1983) , 10.1063/1.444518