Therapy-related myeloid neoplasms: pathobiology and clinical characteristics.

作者: H Sill , W Olipitz , A Zebisch , E Schulz , A Wölfler

DOI: 10.1111/J.1476-5381.2010.01100.X

关键词: MyeloidHaematopoiesisLeukemiaTransplantationHematopoietic stem cell transplantationBiologyMyelodysplastic syndromesGenetic predispositionImmunologyBioinformaticsDe novo Myelodysplastic Syndrome

摘要: Therapy-related myeloid neoplasms (t-MNs) are serious long-term consequences of cytotoxic treatments for an antecedent disorder. t-MNs observed after ionizing radiation as well conventional chemotherapy including alkylating agents, topoisomerase-II-inhibitors and antimetabolites. In addition, adjuvant use recombinant human granulocyte-colony stimulating factor may also increase the risk t-MNs. There is clinical biological overlap between high-risk de novo myelodysplastic syndromes acute leukaemia suggesting similar mechanisms leukaemogenesis. Human studies animal models point to a prominent role genetic susceptibilty in pathogenesis Common variants have been identified that modulate t-MN risk, some cancer predisposition syndromes. either case, establishing leukaemic phenotype requires acquisition somatic mutations – most likely induced by treatment. Knowledge specific nature initiating exposure has allowed identification crucial pathogenetic these be modelled vitro vivo. Prognosis patients with dismal at present, only curative approach majority individuals haematopoietic stem cell transplantation, which characterized high transplant-related mortality rates. Novel transplantation strategies using reduced intensity conditioning regimens novel drugs demethylating agents targeted therapies await testing improve outcome. Ultimately, individual assessment factors translate into tailored establish strategy reducing incidences without jeopardizing therapeutic success rates primary disorders.

参考文章(154)
Nidal Mahgoub, Brigit R. Taylor, Michelle M. Le Beau, Mary Gratiot, Katrin M. Carlson, Susan K. Atwater, Tyler Jacks, Kevin M. Shannon, Myeloid malignancies induced by alkylating agents in Nf1 mice. Blood. ,vol. 93, pp. 3617- 3623 ,(1999) , 10.1182/BLOOD.V93.11.3617
John B. Little, Cellular, Molecular, and Carcinogenic Effects of Radiation Hematology/Oncology Clinics of North America. ,vol. 7, pp. 337- 352 ,(1993) , 10.1016/S0889-8588(18)30244-2
CA Felix, MR Hosler, D Provisor, K Salhany, EA Sexsmith, DJ Slater, NK Cheung, NJ Winick, EA Strauss, R Heyn, BJ Lange, D Malkin, The p53 gene in pediatric therapy-related leukemia and myelodysplasia Blood. ,vol. 87, pp. 4376- 4381 ,(1996) , 10.1182/BLOOD.V87.10.4376.BLOODJOURNAL87104376
Marco Tartaglia, Ernest L. Mehler, Rosalie Goldberg, Giuseppe Zampino, Han G. Brunner, Hannie Kremer, Ineke van der Burgt, Andrew H. Crosby, Andra Ion, Steve Jeffery, Kamini Kalidas, Michael A. Patton, Raju S. Kucherlapati, Bruce D. Gelb, Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics. ,vol. 29, pp. 465- 468 ,(2001) , 10.1038/NG772
Christine Richardson, Maria Jasin, Frequent chromosomal translocations induced by DNA double-strand breaks Nature. ,vol. 405, pp. 697- 700 ,(2000) , 10.1038/35015097
L Pagano, A Pulsoni, L Mele, G Leone, F Equitani, The incidence of secondary leukemias. Haematologica. ,vol. 84, pp. 937- 945 ,(1999) , 10.3324/%X
I. Yakoub-Agha, P. de La Salmonière, P. Ribaud, L. Sutton, E. Wattel, M. Kuentz, J.P. Jouet, G. Marit, N. Milpied, E. Deconinck, N. Gratecos, M. Leporrier, I. Chabbert, D. Caillot, G. Damaj, C. Dauriac, F. Dreyfus, S. François, L. Molina, M.L. Tanguy, S. Chevret, E. Gluckman, Allogeneic Bone Marrow Transplantation for Therapy-Related Myelodysplastic Syndrome and Acute Myeloid Leukemia: A Long-Term Study of 70 Patients—Report of the French Society of Bone Marrow Transplantation Journal of Clinical Oncology. ,vol. 18, pp. 963- 963 ,(2000) , 10.1200/JCO.2000.18.5.963