Indigenous nitrogen in the Moon: Constraints from coupled nitrogen–noble gas analyses of mare basalts

作者: Evelyn Füri , Peter H. Barry , Lawrence A. Taylor , Bernard Marty

DOI: 10.1016/J.EPSL.2015.09.022

关键词: ChondriteOlivineLunar magma oceanLunar mareAnorthositeBasaltIsotopic signatureGeologyMaficGeochemistry

摘要: Nitrogen and noble gas (Ne–Ar) abundances isotope ratios, determined by step-wise CO2 laser-extraction, static-mass spectrometry analysis, are reported for bulk fragments mineral separates of ten lunar mare basalts (10020, 10057, 12008, 14053, 15555, 70255, 71557, 71576, 74255, 74275), one highland breccia (14321), ferroan anorthosite (15414). The basalt sub-samples 10057,183 71576,12 contain a large amount solar gases, whereas neon argon in all other samples purely cosmogenic, as shown their 21Ne/22Ne ratios ≈0.85 36Ar/38Ar ≈0.65. solar-gas-free two-component mixture cosmogenic 15N indigenous nitrogen (<0.5 ppm). Mare 74255 the olivine fraction 15555,876 record smallest proportion 15Ncosm; therefore, δ15Nδ15N values −0.2 to +26.7‰+26.7‰ (observed at low-temperature steps) thought well represent isotopic composition nitrogen. However, ≤−30‰≤−30‰ found several basalts, overlapping with signature Earth's primordial mantle or an enstatite chondrite-like impactor. While lowest allow trapped Moon's interior be inherited from proto-Earth and/or impactor, more 15N-enriched compositions require that carbonaceous chondrites provided magma ocean prior solidification crust. Since can efficiently incorporated into mafic minerals (olivine, pyroxene) under oxygen fugacities close below iron-wustite buffer (Li et al., 2013), source region is likely characterized high storage capacity. In contrast, 15414 shows no traces nitrogen, suggesting was not crust during differentiation.

参考文章(101)
Ko Hashizume, Bernard Marty, Nitrogen Isotopic Analyses at the Sub-Picomole Level Using an Ultralow Blank Laser Extraction Technique Handbook of Stable Isotope Analytical Techniques#R##N#Volume I. pp. 361- 374 ,(2004) , 10.1016/B978-044451114-0/50019-3
Glenn J. MacPherson, John H. Jones, B Simon Steven, J Papike James, Mackwell Stephen, W Mittelfehldt David, Oxygen in the Solar System ,(2018)
Chris J. Ballentine, Rainer Wieler, Donald P. Porcelli, Noble Gases: in Geochemistry and Cosmochemistry ,(2018)
François Robert, The D/H Ratio in Chondrites Space Science Reviews. ,vol. 106, pp. 87- 101 ,(2003) , 10.1007/978-94-010-0145-8_7
K. J. Mathew, S. V. S. Murty, Cosmic ray produced nitrogen in extra terrestrial matter Proceedings of the Indian Academy of Sciences. Earth and planetary sciences. ,vol. 102, pp. 415- 437 ,(1993) , 10.1007/BF02841731
J. Schwarzmueller, H. Schwaller, N. Groegler, H. Graf, U. Kraehenbuehl, P. Eberhardt, J. Geiss, A. Stettler, Trapped solar wind noble gases, exposure age and K/Ar-age in Apollo 11 lunar fine material Geochimica et Cosmochimica Acta Supplement. ,vol. 1, pp. 1037- ,(1970)
Evelyn Füri, Bernard Marty, Nitrogen isotope variations in the Solar System Nature Geoscience. ,vol. 8, pp. 515- 522 ,(2015) , 10.1038/NGEO2451
J. Sutter, J. Funkhouser, L. Husain, O. A. Schaeffer, The ages of lunar material from Fra Mauro, Hadley Rille, and Spur Crater Lunar and Planetary Science Conference Proceedings. ,vol. 3, pp. 1557- ,(1972)
R. S. Lewis, P. K. Davis, C. M. Hohenberg, J. H. Reynolds, W. A. Kaiser, Trapped and cosmogenic rare gases from stepwise heating of Apollo 11 samples Geochimica et Cosmochimica Acta Supplement. ,vol. 1, pp. 1283- ,(1970)
Des Marais, Carbon, nitrogen and sulfur in Apollo 15, 16 and 17 rocks Lunar and Planetary Science Conference Proceedings. ,vol. 2, pp. 2451- 2467 ,(1978)