Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control

作者: Sarah M. Garcia , Cecilia Kopuchian , Gabriel B. Mindlin , Matthew J. Fuxjager , Pablo L. Tubaro

DOI: 10.1016/J.CUB.2017.07.059

关键词: Vocal learningContrast (music)AdaptationSyrinx (bird anatomy)Diversity (business)Evolutionary biologyBiologyAnatomySpecialization (functional)Order (biology)Sister groupGeneral Biochemistry, Genetics and Molecular BiologyGeneral Agricultural and Biological Sciences

摘要: Summary The evolution of complex behavior is driven by the interplay morphological specializations and neuromuscular control mechanisms [1–3], it often difficult to tease apart their respective contributions. Avian vocal learning associated neural adaptations are thought have played a major role in bird diversification [4–8], whereas functional significance substantial diversity the organ remains largely unexplored. Within most species-rich order, Passeriformes, "tracheophones" suboscine group that, unlike oscine sister taxon, does not exhibit [9] phonate with tracheal membranes [10, 11] instead two independent sources found other passerines [12–14]. Here we show tracheophones possess three sound sources, oscine-like labial pairs unique membranes, which collectively represent largest described number for organ. Birds experimentally disabled were still able phonate. Instead main source, constitute specialization, which, through interaction bronchial labia, contributes different acoustic features such as spectral complexity, amplitude modulation, enhanced amplitude. In contrast, these same arise oscines from [15–17]. These findings supported modeling approach and provide clear example how adaptation tracheophone can generate specific, features. Morphological specialization therefore constitutes an alternative path that control.

参考文章(32)
Werner Rüppell, Physiologie und Akustik der Vogelstimme Journal für Ornithologie. ,vol. 81, pp. 433- 542 ,(1933) , 10.1007/BF01905461
Matthew J Fuxjager, Barney A Schlinger, Perspectives on the evolution of animal dancing: a case study of manakins Current Opinion in Behavioral Sciences. ,vol. 6, pp. 7- 12 ,(2015) , 10.1016/J.COBEHA.2015.06.007
Crawford H. Greenewalt, Bird song: acoustics and physiology ,(1968)
Erich D Jarvis, Sidarta Ribeiro, Maria Luisa Da Silva, Dora Ventura, Jacques Vielliard, Claudio V Mello, None, Behaviourally driven gene expression reveals song nuclei in hummingbird brain Nature. ,vol. 406, pp. 628- 632 ,(2000) , 10.1038/35020570
R. A. Suthers, S. A. Zollinger, Mechanisms of song production in songbirds Cambridge University Press. pp. 78- 98 ,(2008)
Rodrigo Alonso, Franz Goller, Gabriel B. Mindlin, Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension. Physical Review E. ,vol. 89, pp. 032706- 032706 ,(2014) , 10.1103/PHYSREVE.89.032706
Franz Goller, Tobias Riede, Integrative physiology of fundamental frequency control in birds. Journal of Physiology-paris. ,vol. 107, pp. 230- 242 ,(2013) , 10.1016/J.JPHYSPARIS.2012.11.001
Ezequiel M. Arneodo, Yonatan Sanz Perl, Gabriel B. Mindlin, Acoustic signatures of sound source-tract coupling. Physical Review E. ,vol. 83, pp. 041920- 041920 ,(2011) , 10.1103/PHYSREVE.83.041920
O. Whitney, A. R. Pfenning, J. T. Howard, C. A. Blatti, F. Liu, J. M. Ward, R. Wang, J.-N. Audet, M. Kellis, S. Mukherjee, S. Sinha, A. J. Hartemink, A. E. West, E. D. Jarvis, Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science. ,vol. 346, pp. 1256780- 1256780 ,(2014) , 10.1126/SCIENCE.1256780