作者: H. Gleeson , P. Hammerton , D. T. Papageorgiou , J.-M. Vanden-Broeck
DOI: 10.1063/1.2716763
关键词: Benjamin–Ono equation 、 Dispersion (water waves) 、 Euler equations 、 Perturbation theory 、 Dispersionless equation 、 Physics 、 Electrohydrodynamics 、 Mathematical physics 、 Kadomtsev–Petviashvili equation 、 Korteweg–de Vries equation
摘要: We consider waves on a layer of finite depth governed by the Euler equations in presence gravity, surface tension, and vertical electric fields. use perturbation theory to identify canonical scalings derive Korteweg–de Vries Benjamin-Ono equation arising interfacial electrohydrodynamics. When Bond number is equal 1∕3, dispersion disappears reduces equation. In additional limit vanishing fields, we show how obtain new evolution that contains third- fifth-order as well nonlocal field term.