Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.

作者: Benjamin Y Gravesteijn , Daan Nieboer , Ari Ercole , Hester F Lingsma , David Nelson

DOI: 10.1016/J.JCLINEPI.2020.03.005

关键词: AlgorithmArtificial intelligenceRegressionGlasgow Outcome ScaleMachine learningRegression analysisGlasgow Coma ScalePredictive modellingRandom forestMedicineLogistic regressionGradient boosting

摘要: Objective We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design …

参考文章(54)
Cheng-Shyuan Rau, Pao-Jen Kuo, Peng-Chen Chien, Chun-Ying Huang, Hsiao-Yun Hsieh, Ching-Hua Hsieh, Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLOS ONE. ,vol. 13, ,(2018) , 10.1371/JOURNAL.PONE.0207192
Leo Breiman, Random Forests Machine Learning archive. ,vol. 45, pp. 5- 32 ,(2001) , 10.1023/A:1010933404324
Evangelia Christodoulou, Jie Ma, Gary S. Collins, Ewout W. Steyerberg, Jan Y. Verbakel, Ben Van Calster, A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models Journal of Clinical Epidemiology. ,vol. 110, pp. 12- 22 ,(2019) , 10.1016/J.JCLINEPI.2019.02.004
Kee Yuan Ngiam, Ing Wei Khor, Big data and machine learning algorithms for health-care delivery Lancet Oncology. ,vol. 20, ,(2019) , 10.1016/S1470-2045(19)30149-4
Bernd Bischl, Anne-Laure Boulesteix, Philipp Probst, Tunability: Importance of Hyperparameters of Machine Learning Algorithms Journal of Machine Learning Research. ,vol. 20, pp. 1- 32 ,(2019)
Jin-zhou Feng, Yu Wang, Jin Peng, Ming-wei Sun, Jun Zeng, Hua Jiang, Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. Journal of Critical Care. ,vol. 54, pp. 110- 116 ,(2019) , 10.1016/J.JCRC.2019.08.010
Kazuya Matsuo, Hideo Aihara, Tomoaki Nakai, Akitsugu Morishita, Yoshiki Tohma, Eiji Kohmura, Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury. Journal of Neurotrauma. ,vol. 37, pp. 202- 210 ,(2020) , 10.1089/NEU.2018.6276
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt, Peter J. Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flores, Gavin E. Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael D. Howell, Claire Cui, Greg S. Corrado, Jeffrey Dean, Scalable and accurate deep learning with electronic health records npj Digital Medicine. ,vol. 1, pp. 18- ,(2018) , 10.1038/S41746-018-0029-1
Stef van Buuren, Flexible Imputation of Missing Data ,(2012)
Tjeerd van der Ploeg, Peter C Austin, Ewout W Steyerberg, Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints BMC Medical Research Methodology. ,vol. 14, pp. 137- 137 ,(2014) , 10.1186/1471-2288-14-137