An ε-uniform finite element method for singularly perturbed two-point boundary value problems

作者: Q. S. Song , G. Yin , Z. Zhang

DOI:

关键词: MathematicsMethod of fundamental solutionsBoundary value problemBoundary knot methodMixed finite element methodExtended finite element methodSingular boundary methodMathematical analysisMixed boundary conditionBoundary (topology)

摘要: This work develops an e-uniform finite element method for singularly perturbed two-point boundary value problems. A surprising and remarkable observation is illustrated: By inserting one node arbitrarily in any element, the new solution always intersects with original at fixed points, errors those points converge same rate as regular problems (without layers). Using this fact, effective approximation out of layer proposed by adding point only that contains layer. The thickness need not be known a priori. Numerical results are carried compared to Shishkin mesh demonstration purpose.

参考文章(15)
N. V. Kopteva, Uniform convergence with respect to a small parameter of a scheme with central difference on refining grids Computational Mathematics and Mathematical Physics. ,vol. 39, pp. 1594- 1610 ,(1999)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Zhimin Zhang, Finite element superconvergence approximation for one‐dimensional singularly perturbed problems Numerical Methods for Partial Differential Equations. ,vol. 18, pp. 374- 395 ,(2002) , 10.1002/NUM.10001
Natalia Kopteva, Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem SIAM Journal on Numerical Analysis. ,vol. 39, pp. 423- 441 ,(2001) , 10.1137/S0036142900368642
F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, E. Süli, A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems SIAM Journal on Numerical Analysis. ,vol. 36, pp. 1933- 1948 ,(1999) , 10.1137/S0036142998342367
Alan E. Berger, E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers Mathematics of Computation. ,vol. 39, pp. 739- ,(1982) , 10.2307/2007353
Weizhang Huang, Variational Mesh Adaptation: Isotropy and Equidistribution Journal of Computational Physics. ,vol. 174, pp. 903- 924 ,(2001) , 10.1006/JCPH.2001.6945