Model of Post Fire Erosion Assessment Using RUSLE Method, GIS Tools and ESA Sentinel DATA

作者: Gabriele Nolè , Valentina Santarsiero , Antonio Lanorte , Biagio Tucci , Vito Augusto Capurso

DOI: 10.1007/978-3-030-58814-4_36

关键词: Thematic mapUniversal Soil Loss EquationEnvironmental scienceGeographic information systemChange detectionErosionEnvironmental resource managementMap algebraVegetationGraphical model

摘要: Soil erosion in fired areas is one of the main environmental problem involves degrading quality soil and reducing productivity affected lands. The aim this work to implement a procedure that analyzes change detection potential eroded burned area, discriminate amount loss. As part MESARIP project (in agreement with Regional Civil Protection) order analyses pre post fire event, using Sentinel 2 data RUSLE (Revised Universal Loss Equation) method GIS open source environment, graphical model has been developed. application requires series consequential spatial analysis elaborations and, according scheme, developed Graphical Modeler. QGIS contains single environment multiplicity tools algorithms native other software, such as, for example, SAGA GRASS GIS. user interface very simple basic thematic input as DEM, MASK or vegetation indices etc. advantages construction can be identified standardization map algebra operations also speed execution steps. Currently tested some 2019 located northern Apulia Region will operational mode during 2020 summer season.

参考文章(29)
Africa Heredia Laclaustra, Emilio Chuvieco Salinero, William Piñeros, Emely Quintero, Susana Martínez Sánchez, COMPARACIÓN DE DISTINTAS TÉCNICAS DE ANÁLISIS DIGITAL PARA LA CARTOGRAFÍA DE ÁREAS QUEMADAS CON IMÁGENES LANDSAT ETM Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica. ,vol. 3, pp. 14- ,(2003)
W. H. Wischmeier, D. D. Smith, Predicting rainfall erosion losses : a guide to conservation planning Predicting rainfall erosion losses - a guide to conservation planning.. ,vol. 537, pp. 62- ,(1978)
GD Richards, A General Mathematical Framework for Modeling Two-Dimensional Wildland Fire Spread International Journal of Wildland Fire. ,vol. 5, pp. 63- 72 ,(1995) , 10.1071/WF9950063
M. Sorriso-Valvo, R.B. Bryan, A. Yair, F. Iovino, L. Antronico, Impact of afforestation on hydrological response and sediment production in a small Calabrian catchment Catena. ,vol. 25, pp. 89- 104 ,(1995) , 10.1016/0341-8162(95)00002-A
J. A. Hartigan, M. A. Wong, A K-Means Clustering Algorithm Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 28, pp. 100- 108 ,(1979) , 10.2307/2346830
B. J. Fu, W. W. Zhao, L. D. Chen, Q. J. Zhang, Y. H. Lü, H. Gulinck, J. Poesen, Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China Land Degradation & Development. ,vol. 16, pp. 73- 85 ,(2005) , 10.1002/LDR.646
M.J. López García, V. Caselles, Mapping burns and natural reforestation using thematic Mapper data Geocarto International. ,vol. 6, pp. 31- 37 ,(1991) , 10.1080/10106049109354290
I. O. A. Odeh, A. B. McBratney, D. J. Chittleborough, Soil pattern recognition with fuzzy-c-means : application to classification and soil-landform interrelationships Soil Science Society of America Journal. ,vol. 56, pp. 505- 516 ,(1992) , 10.2136/SSSAJ1992.03615995005600020027X