Developing a neural network and real genetic algorithm combined tool for an engine test bed

作者: Mian Hong Wu , Wanchang Lin , Shang Y Duan

DOI: 10.1243/09544070JAUTO229

关键词: Test dataEvolutionary algorithmMultilayer perceptronRadial basis functionInternal combustion engineGenetic algorithmEngineeringAutomotive industryArtificial neural networkSimulation

摘要: AbstractIn the automotive industry, engine test engineers are required to deal with a huge quantity of experimental data obtained from beds each day. Those must be analysed evaluate performance and guide further operations. In order improve efficiency reduce expenditure time in testing, it is very important for bed controllers develop mathematical model existing data. This paper presents an investigation neural network-genetic algorithm (GA) combined tool modelling. modelling tool, real-coded GA has been employed train three different groups networks (a multilayer perceptron group, radial basis function bar group) then finally find most suitable network The results given this show that proposed successfully used Rover testing.

参考文章(19)
Norbert Jankowski, NEW NEURAL TRANSFER FUNCTIONS ,(2007)
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen, Neural Networks for Modelling and Control of Dynamic Systems Advanced Textbooks in Control and Signal Processing. ,(2000) , 10.1007/978-1-4471-0453-7
F. Herrera, M. Lozano, J.L. Verdegay, Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis Artificial Intelligence Review. ,vol. 12, pp. 265- 319 ,(1998) , 10.1023/A:1006504901164
Larry J. Eshelman, J. David Schaffer, Real-Coded Genetic Algorithms and Interval-Schemata foundations of genetic algorithms. ,vol. 2, pp. 187- 202 ,(1993) , 10.1016/B978-0-08-094832-4.50018-0
S. A. BILLINGS, Q. M. ZHU, Nonlinear Model Validation Using Correlation Tests International Journal of Control. ,vol. 60, pp. 1107- 1120 ,(1994) , 10.1080/00207179408921513
Heinz Mühlenbein, Dirk Schlierkamp-Voosen, Predictive models for the breeder genetic algorithm i. continuous parameter optimization Evolutionary Computation. ,vol. 1, pp. 25- 49 ,(1993) , 10.1162/EVCO.1993.1.1.25
Eric Hartman, James D. Keeler, Predicting the future: Advantages of semilocal units Neural Computation. ,vol. 3, pp. 566- 578 ,(1991) , 10.1162/NECO.1991.3.4.566
S. A. BILLINGS, Q. M. ZHU, Model validation tests for multivariable nonlinear models including neural networks International Journal of Control. ,vol. 62, pp. 749- 766 ,(1995) , 10.1080/00207179508921566
Eric J. Hartman, James D. Keeler, Jacek M. Kowalski, Layered neural networks with Gaussian hidden units as universal approximations Neural Computation. ,vol. 2, pp. 210- 215 ,(1990) , 10.1162/NECO.1990.2.2.210
P. J. Jacob, F Gu, A. D. Ball, Non-parametric models in the monitoring of engine performance and condition: Part 1: Modelling of non-linear engine processes Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. ,vol. 213, pp. 73- 81 ,(1999) , 10.1243/0954407991526694