On Brzozowski's Conjecture for the free burnside semigroup satisfying x 2 = x 3

作者: Andrey N. Plyushchenko , Arseny M. Shur

DOI: 10.1007/978-3-642-22321-1_31

关键词: Beal's conjectureCombinatoricsSemigroupMathematicsDiscrete mathematicsRegular languageCollatz conjectureCongruence classWord problem (mathematics)X.3Conjecture

摘要: In this paper we examine Brzozowski's conjecture for the two-generated free Burnside semigroup satisfying x2 = x3. The elements of are classes equivalent words, and claims that all regular languages. case identity x3 is only one, which neither proved nor disproved. We prove containing an overlap-free or "almost" word. addition, show but finitely many these "big" languages in terms growth rate.

参考文章(14)
Janusz Brzozowski, OPEN PROBLEMS ABOUT REGULAR LANGUAGES Formal Language Theory#R##N#Perspectives and Open Problems. pp. 23- 47 ,(1980) , 10.1016/B978-0-12-115350-2.50007-5
Aldo de Luca, Stefano Varricchio, On Non-Counting Regular Classes international colloquium on automata, languages and programming. pp. 74- 87 ,(1990) , 10.1007/BFB0032023
Alair Pereira do Lago, Maximal Groups in Free Burnside Semigroups latin american symposium on theoretical informatics. pp. 65- 75 ,(1998) , 10.1007/BFB0054311
ALAIR PEREIRA DO LAGO, ON THE BURNSIDE SEMIGROUPS xn = xn+m International Journal of Algebra and Computation. ,vol. 06, pp. 179- 227 ,(1996) , 10.1142/S0218196796000106
V.S. GUBA, THE WORD PROBLEM FOR THE RELATIVELY FREE SEMIGROUP SATISFYING Tm=Tm+n WITH m≥4 OR m=3, n=1 International Journal of Algebra and Computation. ,vol. 03, pp. 125- 140 ,(1993) , 10.1142/S021819679300010X
Alair Pereira do Lago, Imre Simon, Free Burnside Semigroups Theoretical Informatics and Applications. ,vol. 35, pp. 579- 595 ,(2001) , 10.1051/ITA:2001133
V.S. GUBA, THE WORD PROBLEM FOR THE RELATIVELY FREE SEMIGROUP SATISFYING Tm=Tm+n WITH m≥3 International Journal of Algebra and Computation. ,vol. 03, pp. 335- 347 ,(1993) , 10.1142/S0218196793000226
J. McCAMMOND, THE SOLUTION TO THE WORD PROBLEM FOR THE RELATIVELY FREE SEMIGROUPS SATISFYING Ta = Ta+b WITH a ≥ 6 International Journal of Algebra and Computation. ,vol. 01, pp. 1- 32 ,(1991) , 10.1142/S021819679100002X
J.A. Brzozowski, K. Čulík, A. Gabrielian, Classification of noncounting events Journal of Computer and System Sciences. ,vol. 5, pp. 41- 53 ,(1971) , 10.1016/S0022-0000(71)80006-5
A. N. Plyushchenko, On the word problem for the free Burnside semigroups satisfying x 2 = x 3 Russian Mathematics. ,vol. 55, pp. 76- 79 ,(2011) , 10.3103/S1066369X11110119