Sequential Importance Sampling Algorithms for Dynamic Stochastic Programming

作者: M. A. H. Dempster

DOI: 10.1007/S10958-006-0058-1

关键词: Context (language use)Stochastic programmingNode (circuits)MathematicsAlgorithmImportance samplingUniform normExpected value of perfect informationConditional expectationMathematical optimizationGibbs sampling

摘要: This paper gives a comprehensive treatment of EVPI-based sequential importance sampling algorithms for dynamic (multistage) stochastic programming problems. Both theory and computational are discussed. Under general assumptions it is shown that both an expected value perfect information (EVPI) process the corresponding marginal EVPI (the supremum norm conditional expectation its generalized derivative) nonanticipative nonnegative supermartingales. These processes used as criteria in class treated paper. When their values negligible at node current sample problem scenario tree, scenarios descending from replaced by single next iteration. On other hand, high lead to increasing number node. small asymptotic properties estimates arising established, former evaluated numerically context financial planning problem. Finally, future research described. Bibliography: 49 titles.

参考文章(43)
Z. Chen, G. Consigli, M. A. H. Dempster, N. Hicks-Pedrón., Towards Sequential Sampling Algorithms for Dynamic Portfolio Management Springer, Boston, MA. pp. 197- 211 ,(1998) , 10.1007/978-1-4615-5495-0_12
H.I. Gassmann, J.R. Birge, S.W. Wallace, A.J. King, E. Gunn, M.A.H. Dempster, A Standard Input Format for Multiperiod Stochastic Linear Programs WP-87-118. ,(1987)
R. T. Rockafellar, R. J.-B. Wets, A Lagrangian finite generation technique for solving linear-quadratic problems in stochastic programming Mathematical Programming Studies. pp. 63- 93 ,(1986) , 10.1007/BFB0121126
Paul Olsen, Discretizations of multistage stochastic programming problems Mathematical Programming Studies. pp. 111- 124 ,(1976) , 10.1007/BFB0120747
George B. Dantzig, Albert Medansky, On the Solution of Two-stage Linear Programs under Uncertainty Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. pp. 165- 176 ,(1961)
George B. Dantzig, Gerd Infanger, Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition Defense Technical Information Center. ,(1991) , 10.21236/ADA234962
M.H.A. Davis, M.A.H. Dempster, R.J. Elliott, On the Value of Information in Controlled Diffusion Processes Stochastic Analysis#R##N#Liber Amicorum for Moshe Zakai. pp. 125- 138 ,(1991) , 10.1016/B978-0-12-481005-1.50013-2