TRIANGULAR FUZZY MATRICES

作者: M Pal , A K Shyamal

DOI: 10.22111/IJFS.2007.359

关键词: Fuzzy subalgebraAlgebraFuzzy associative matrixTrace (linear algebra)Constant (mathematics)Fuzzy logicFuzzy mathematicsMathematicsFuzzy number

摘要: In this paper, some elementary operations on triangular fuzzy numbers (TFNs) are defined. We also define triangu- lar matrices (TFMs) such as trace and determinant (TFD). Using operations, important properties of TFMs presented. The concept adjoints TFM is discussed their are. Some special types (e.g. pure triangular, symmetric, skew-symmetric, singular, semi-singular, constant) defined a number these

参考文章(19)
Waldemar Kołodziejczyk, Convergence of powers of s-transitive fuzzy matrices Fuzzy Sets and Systems. ,vol. 26, pp. 127- 130 ,(1988) , 10.1016/0165-0114(88)90011-5
M.Z. Ragab, E.G. Emam, On the min-max composition of fuzzy matrices Fuzzy Sets and Systems. ,vol. 75, pp. 83- 92 ,(1995) , 10.1016/0165-0114(94)00332-2
Amiya K. Shyamal, Madhumangal Pal, Two new operators on fuzzy matrices Journal of Applied Mathematics and Computing. ,vol. 15, pp. 91- 107 ,(2004) , 10.1007/BF02935748
Hiroshi Hashimoto, Convergence of powers of a fuzzy transitive matrix Fuzzy Sets and Systems. ,vol. 9, pp. 153- 160 ,(1983) , 10.1016/S0165-0114(83)80015-3
Hiroshi Hashimoto, Canonical form of a transitive fuzzy matrix Fuzzy Sets and Systems. ,vol. 11, pp. 151- 156 ,(1983) , 10.1016/S0165-0114(83)80076-1
Waldemar Kołodziejczyk, Canonical form of a strongly transitive fuzzy matrix Fuzzy Sets and Systems. ,vol. 22, pp. 297- 302 ,(1987) , 10.1016/0165-0114(87)90073-X
Michael G Thomason, Convergence of powers of a fuzzy matrix Journal of Mathematical Analysis and Applications. ,vol. 57, pp. 476- 480 ,(1977) , 10.1016/0022-247X(77)90274-8
M.Z. Ragab, E.G. Eman, The determinant and adjoint of a square fuzzy matrix Fuzzy Sets and Systems. ,vol. 61, pp. 297- 307 ,(1994) , 10.1016/0165-0114(94)90172-4