MQQ-SIG

作者: Danilo Gligoroski , Rune Steinsmo Ødegård , Rune Erlend Jensen , Ludovic Perret , Jean-Charles Faugère

DOI: 10.1007/978-3-642-32298-3_13

关键词: Discrete mathematicsOrders of magnitude (bit rate)Computer scienceElliptic Curve Digital Signature AlgorithmQuadratic equationSignature (topology)Smart cardAlgorithmDigital signatureRandom oraclePublic-key cryptography

摘要: We present MQQ-SIG, a signature scheme based on "Multivariate Quadratic Quasigroups". The MQQ-SIG has public key consisting of $\frac{n}{2}$ quadratic polynomials in n variables where n=160, 192, 224 or 256. Under the assumption that solving systems MQQ's equations is as hard random equations, we prove oracle model our CMA (Chosen-Message Attack) resistant. From efficiency point view, signing and verification processes are three orders magnitude faster than RSA ECDSA. Compared with other MQ schemes, both advantages disadvantages. Advantages it more times smaller private keys (from 401 to 593 bytes), process an order schemes. That makes very suitable for implementation smart cards embedded systems. However, big 125 512 Kb) not size be small.

参考文章(44)
Magali Turrel Bardet, Etude des systèmes algébriques surdéterminés : applications aux codes correcteurs et à la cryptographie Université Pierre et Marie Curie - Paris VI. ,(2004)
Danilo Gligoroski, Svein Johan Knapskog, Smile Markovski, Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups MATH'08 Proceedings of the American Conference on Applied Mathematics. pp. 44- 49 ,(2008)
Pierre-Alain Fouque, Louis Granboulan, Jacques Stern, Differential cryptanalysis for multivariate schemes theory and application of cryptographic techniques. pp. 341- 353 ,(2005) , 10.1007/11426639_20
Albrecht Petzoldt, Stanislav Bulygin, Johannes Buchmann, CyclicRainbow – A Multivariate Signature Scheme with a Partially Cyclic Public Key Progress in Cryptology - INDOCRYPT 2010. pp. 33- 48 ,(2010) , 10.1007/978-3-642-17401-8_4
Bo-Yin Yang, Jintai Ding, Christopher Wolf, l-invertible cycles for multivariate quadratic (MQ) public key cryptography public key cryptography. pp. 266- 281 ,(2007)
Jacques Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Schemeof Eurocrypt‘98 Designs, Codes and Cryptography. ,vol. 20, pp. 175- 209 ,(2000) , 10.1023/A:1008341625464
Masao Kasahara, Ryuichi Sakai, A Construction of Public Key Cryptosystem for Realizing Ciphertext of Size 100 Bit and Digital Signature Scheme IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 87, pp. 102- 109 ,(2004)
Tsutomu Matsumoto, Hideki Imai, Public quadratic polynomial-tuples for efficient signature-verification and message-encryption theory and application of cryptographic techniques. pp. 419- 453 ,(1988) , 10.1007/3-540-45961-8_39