Weight Uncertainty in Neural Network

作者: Koray Kavukcuoglu , Daan Wierstra , Charles Blundell , Julien Cornebise

DOI:

关键词: Artificial intelligenceUpper and lower boundsMathematical optimizationArtificial neural networkReinforcement learningDropout (neural networks)MathematicsBayes' theoremMNIST databaseMachine learningProbability distributionMarginal likelihood

摘要: … Uncertainty in the hidden units allows the expression of uncertainty about a particular observation, uncertainty … in that it captures uncertainty about which neural network is appropriate, …

参考文章(40)
Matthew Zeiler, Rob Fergus, Li Wan, Yann Le Cun, Sixin Zhang, Regularization of Neural Networks using DropConnect international conference on machine learning. pp. 1058- 1066 ,(2013)
AG Guez, Sample-based Search Methods for Bayes-Adaptive Planning Doctoral thesis, UCL (University College London).. ,(2015)
Tommi S Jaakkola, Michael I Jordan, None, Bayesian parameter estimation via variational methods Statistics and Computing. ,vol. 10, pp. 25- 37 ,(2000) , 10.1023/A:1008932416310
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Thomas P. Minka, Rosalind Picard, A family of algorithms for approximate bayesian inference Massachusetts Institute of Technology. ,(2001)
L. K. Saul, T. Jaakkola, M. I. Jordan, Mean field theory for sigmoid belief networks Journal of Artificial Intelligence Research. ,vol. 4, pp. 61- 76 ,(1996) , 10.1613/JAIR.251
Thomas Minka, Divergence measures and message passing pp. 17- ,(2005)
Nathan Korda, David S. Leslie, Anthony Lee, Benedict C. May, Optimistic Bayesian sampling in contextual-bandit problems Journal of Machine Learning Research. ,vol. 13, pp. 2069- 2106 ,(2012) , 10.5555/2188385.2343711
Geoffrey E. Hinton, Vinod Nair, Rectified Linear Units Improve Restricted Boltzmann Machines international conference on machine learning. pp. 807- 814 ,(2010)
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, Distilling the Knowledge in a Neural Network arXiv: Machine Learning. ,(2015)