作者: Cyril Goutte , Jan Larsen
DOI: 10.1007/978-1-4471-1599-1_104
关键词: Metric (mathematics) 、 Cross-validation 、 Sensitivity (control systems) 、 Applied mathematics 、 Process (computing) 、 Set (abstract data type) 、 Estimator 、 Mathematics 、 Kernel (statistics) 、 Statistics
摘要: Cross-validation is a widespread method for assessing the generalisation ability of model in order to tune regularisation parameter or other hyper-parameters learning process. The use cross-validation requires set yet an additional parameter, split ratio. Few texts have investigated theoretically asymptotic setting this ratio, and no consensus has emerged. In contribution, we investigate sensitivity optimal ratio on particular model, non-parametric kernel estimator with adaptive metric.