Radial interchange motions of plasma filaments

作者: O. E. Garcia , N. H. Bian , W. Fundamenski

DOI: 10.1063/1.2336422

关键词: PhysicsDissipationLength scaleRadial velocityVortexMechanicsDebye sheathPlasmaAtomic physicsVorticityConvection

摘要: Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion vorticity generation, ballooning, and the role sheaths, two-field model studied by means numerical simulations on biperiodic domain perpendicular magnetic field. It demonstrated that blob-like plasma structure develops dipolar electrostatic potential fields, resulting rapid radial acceleration formation steep front trailing wake. While dynamical evolution strongly depends amount collisional diffusion viscosity, travels distance many times its initial size all parameter regimes absence sheath dissipation. In ideal limit, there an inertial scaling for maximum velocity filaments. This scales as acoustic speed square root relative length scale The filament eventually decelerates mixing Finally, dissipation When included simulations, it significantly reduces results are discussed context convective transport scrape-off layer plasmas, comprising both low confinement modes edge localized mode filaments unstable high regimes.

参考文章(82)
M. Beurskens, M. de Baar, J. Lönnroth, P. J. Lomas, G. Matthews, W. Fundamenski, V. Parail, M. Becoulet, P. Monier-Garbet, E. de la Luna, B. Gonçalves, C. Silva, Y. Corre, Contributors to the EFDA-JET Workpr, A. Loarte, G. Saibene, R. Sartori, T. Eich, A. Kallenbach, W. Suttrop, M. Kempenaars, Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor Physics of Plasmas. ,vol. 11, pp. 2668- 2678 ,(2004) , 10.1063/1.1707025
D L Rudakov, J A Boedo, R A Moyer, S Krasheninnikov, A W Leonard, M A Mahdavi, G R McKee, G D Porter, P C Stangeby, J G Watkins, W P West, D G Whyte, G Antar, Fluctuation-driven transport in the DIII-D boundary Plasma Physics and Controlled Fusion. ,vol. 44, pp. 717- 731 ,(2002) , 10.1088/0741-3335/44/6/308
G S Kirnev, V P Budaev, S A Grashin, E V Gerasimov, L N Khimchenko, Intermittent transport in the plasma periphery of the T-10 tokamak Plasma Physics and Controlled Fusion. ,vol. 46, pp. 621- 637 ,(2004) , 10.1088/0741-3335/46/4/004
G.S Kirnev, V.P Budaev, S.A Grashin, L.N Khimchenko, D.V Sarytchev, Comparison of plasma turbulence in the low- and high-field Scrape-Off Layers in the T-10 tokamak Nuclear Fusion. ,vol. 45, pp. 459- 467 ,(2005) , 10.1088/0029-5515/45/6/007
D. A. D’Ippolito, J. R. Myra, Blob stability and transport in the scrape-off-layer Physics of Plasmas. ,vol. 10, pp. 4029- 4039 ,(2003) , 10.1063/1.1606447
M. Yagi, W. Horton, Reduced Braginskii equations Physics of Plasmas. ,vol. 1, pp. 2135- 2139 ,(1994) , 10.1063/1.870611
J. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack, G. Antar, Transport by intermittent convection in the boundary of the DIII-D tokamak Physics of Plasmas. ,vol. 8, pp. 4826- 4833 ,(2001) , 10.1063/1.1406940
G. Y. Antar, P. Devynck, X. Garbet, S. C. Luckhardt, Turbulence intermittency and burst properties in tokamak scrape-off layer Physics of Plasmas. ,vol. 8, pp. 1612- 1624 ,(2001) , 10.1063/1.1363663
H. R. Strauss, Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks Physics of Fluids. ,vol. 19, pp. 134- 140 ,(1976) , 10.1063/1.861310
O. E. GARCIA, Two-field transport models for magnetized plasmas Journal of Plasma Physics. ,vol. 65, pp. 81- 96 ,(2001) , 10.1017/S0022377801008972