A Large Deviation Result for the Likelihood Ratio Statistic in Exponential Families

作者: Stavros Kourouklis

DOI: 10.1214/AOS/1176346807

关键词: MathematicsCovariance matrixLarge deviations theoryPolytopeLikelihood-ratio testExponentially modified Gaussian distributionCombinatoricsExponential familyMultivariate normal distributionStatisticsCompact space

摘要: In this paper we consider exponential families of distributions and obtain under certain conditions a uniform large deviation result about the tail probability $P_\partial(\phi_\partial(\bar{X}_n) > \varepsilon), \varepsilon 0$, where $\partial$ is natural parameter $\phi_\partial(\bar{X}_n)$ $\log$ likelihood ratio statistic for testing null hypothesis $\{\partial\}$. The technique involves approximating convex compact sets in $R^k$ by polytopes, then estimating contents associated closed halfspaces, counting number these half-spaces. Some examples are given, among them multivariate normal distribution with unknown mean vector covariance matrix.

参考文章(11)
Ole Barndorff-Nielsen, Information and exponential families ,(1970)
Robert H. Berk, Consistency and Asymptotic Normality of MLE's for Exponential Models Annals of Mathematical Statistics. ,vol. 43, pp. 193- 204 ,(1972) , 10.1214/AOMS/1177692713
Wassily Hoeffding, Asymptotically Optimal Tests for Multinomial Distributions Annals of Mathematical Statistics. ,vol. 36, pp. 431- 471 ,(1965) , 10.1007/978-1-4612-0865-5_28
A. A. Borovkov, Some Inequalities for Sums of Multidimensional Random Variables Theory of Probability & Its Applications. ,vol. 13, pp. 156- 160 ,(1968) , 10.1137/1113013
R. M. Dudley, Metric Entropy of Some Classes of Sets with Differentiable Boundaries Journal of Approximation Theory. ,vol. 10, pp. 227- 236 ,(1974) , 10.1007/978-1-4419-5821-1_26
Robert H. Berk, L. D. Brown, Sequential Bahadur Efficiency Annals of Statistics. ,vol. 6, pp. 567- 581 ,(1978) , 10.1214/AOS/1176344201
E. M. Bronshteyn, L. D. Ivanov, The approximation of convex sets by polyhedra Siberian Mathematical Journal. ,vol. 16, pp. 852- 853 ,(1976) , 10.1007/BF00967115
Stavros Kourouklis, Bahadur Optimality of Sequential Experiments for Exponential Families Annals of Statistics. ,vol. 12, pp. 1522- 1527 ,(1984) , 10.1214/AOS/1176346808
David G. Herr, Asymptotically Optimal Tests for Multivariate Normal Distributions Annals of Mathematical Statistics. ,vol. 38, pp. 1829- 1844 ,(1967) , 10.1214/AOMS/1177698616