An unsplit Godunov method for ideal MHD via constrained transport

作者: Thomas A. Gardiner , James M. Stone

DOI: 10.1016/J.JCP.2004.11.016

关键词: Mathematical optimizationApplied mathematicsMagnetohydrodynamicsMathematicsRiemann solverSolverGodunov's schemeFlow (mathematics)Ideal (set theory)Reconstruction algorithmField (physics)Physics and Astronomy (miscellaneous)Computer Science Applications

摘要: We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) performing spatial reconstruction, corner transport upwind (CTU) of Colella multidimensional integration, and constrained (CT) algorithm preserving divergence-free constraint magnetic field. adopt most compact form CT, which requires field be represented by area-averages at cell faces. demonstrate that fluxes area-averaged used CT can made consistent with volume-averaged returned Riemann solver if they obey certain simple relationships. use these relationships to derive new algorithms constructing grid corners reduce exactly equivalent one-dimensional plane-parallel, grid-aligned flow. show PPM reconstruction must include terms MHD, we number important extensions CTU in order it CT. present results variety test problems is robust.

参考文章(35)
Ue‐Li Pen, Phil Arras, ShingKwong Wong, A FREE, FAST, SIMPLE, AND EFFICIENT TOTAL VARIATION DIMINISHING MAGNETOHYDRODYNAMIC CODE Astrophysical Journal Supplement Series. ,vol. 149, pp. 447- 455 ,(2003) , 10.1086/378771
Shengtai Li, An HLLC Riemann solver for magneto-hydrodynamics Journal of Computational Physics. ,vol. 203, pp. 344- 357 ,(2005) , 10.1016/J.JCP.2004.08.020
Jan Olav Langseth, Randall J. LeVeque, A wave propagation method for three-dimensional hyperbolic conservation laws Journal of Computational Physics. ,vol. 165, pp. 126- 166 ,(2000) , 10.1006/JCPH.2000.6606
S. A. E. G. Falle, S. S. Komissarov, P. Joarder, A multidimensional upwind scheme for magnetohydrodynamics Monthly Notices of the Royal Astronomical Society. ,vol. 297, pp. 265- 277 ,(1998) , 10.1046/J.1365-8711.1998.01506.X
L. Del Zanna, M. Velli, P. Londrillo, Parametric decay of circularly polarized Alfvén waves: Multidimensional simulations in periodic and open domains Astronomy and Astrophysics. ,vol. 367, pp. 705- 718 ,(2001) , 10.1051/0004-6361:20000455
James M. Stone, Michael L. Norman, ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests Astrophysical Journal Supplement Series. ,vol. 80, pp. 791- 818 ,(1992) , 10.1086/191681
Wenlong Dai, Paul R. Woodward, A High-Order Godunov-Type Scheme for Shock Interactions in Ideal Magnetohydrodynamics SIAM Journal on Scientific Computing. ,vol. 18, pp. 957- 981 ,(1997) , 10.1137/S1064827593257729
J.U Brackbill, D.C Barnes, The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ Journal of Computational Physics. ,vol. 35, pp. 426- 430 ,(1980) , 10.1016/0021-9991(80)90079-0
Andrew L. Zachary, Andrea Malagoli, Phillip Colella, A higher-order Godunov method for multidimensional ideal magnetohydrodynamics SIAM Journal on Scientific Computing. ,vol. 15, pp. 263- 284 ,(1994) , 10.1137/0915019
Kenneth G. Powell, Philip L. Roe, Timur J. Linde, Tamas I. Gombosi, Darren L. De Zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics Journal of Computational Physics. ,vol. 154, pp. 284- 309 ,(1999) , 10.1006/JCPH.1999.6299