作者: Sue E. Kase , Frank E. Ritter , Michael Schoelles
DOI: 10.1007/978-1-4020-8735-6_89
关键词: Computational model 、 Artificial intelligence 、 Partitioned global address space 、 Cognition 、 Cognitive model 、 Field (computer science) 、 Parallel processing (DSP implementation) 、 Supercomputer 、 Computer science 、 Machine learning 、 Cognitive architecture 、 Parallel computing
摘要: Cognitive modeling on high performance computing platforms is an emerging field. A preliminary analysis presented the use of parallel processing and genetic algorithms for optimizing fit non-linear, multivariable symbolic models human cognition to experimental data. The effectiveness this optimization methodology illustrated with a prototype model serial arithmetic task built in ACT-R cognitive architecture. results confirm that HPC-based techniques could replace manual used by modelers up until present.