Graded Meshes in Optimal Control for Elliptic Partial Differential Equations: An Overview

作者: Thomas Apel , Johannes Pfefferer , Arnd Rösch

DOI: 10.1007/978-3-319-05083-6_18

关键词: Polygon meshElliptic partial differential equationMathematicsApplied mathematicsConvergence (routing)Domain (mathematical analysis)Finite element methodOptimal controlNumerical partial differential equationsBoundary value problem

摘要: It is well known that singularities in the solution of boundary value problems due to corners and edges domain lead a reduction convergence order standard finite element method when quasi-uniform meshes are used. also locally graded suited recover optimal order. Less critical angles mesh grading becomes necessary; it not always same but depends on norm which error estimated. In this paper, an overview results given lacking estimates pointed out. Since for control based those pure both cases considered.

参考文章(25)
Tunc Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique. ,vol. 13, pp. 313- 328 ,(1979) , 10.1051/M2AN/1979130403131
Anna-Margarete Sändig, Error estimates for finite-element solutions of elliptic boundary value problems in non-smooth domains Zeitschrift Fur Analysis Und Ihre Anwendungen. ,vol. 9, pp. 133- 153 ,(1990) , 10.4171/ZAA/388
T. Apel, M. Dobrowolski, Anisotropic interpolation with applications to the finite element method Computing. ,vol. 47, pp. 277- 293 ,(1991) , 10.1007/BF02320197
Thomas Apel, Johannes Pfefferer, Max Winkler, Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra Mathematical Methods in The Applied Sciences. ,vol. 39, pp. 1206- 1232 ,(2016) , 10.1002/MMA.3566
Thomas Apel, Gunter Winkler, Optimal control under reduced regularity Applied Numerical Mathematics. ,vol. 59, pp. 2050- 2064 ,(2009) , 10.1016/J.APNUM.2008.12.003
M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case Computational Optimization and Applications. ,vol. 30, pp. 45- 61 ,(2005) , 10.1007/S10589-005-4559-5
L.A. Oganesyan, L.A. Rukhovets, Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary USSR Computational Mathematics and Mathematical Physics. ,vol. 8, pp. 129- 152 ,(1968) , 10.1016/0041-5553(68)90008-6
Richard S. Falk, Approximation of a class of optimal control problems with order of convergence estimates Journal of Mathematical Analysis and Applications. ,vol. 44, pp. 28- 47 ,(1973) , 10.1016/0022-247X(73)90022-X
Thomas Apel, Arnd Rösch, Dieter Sirch, $L^\infty$-Error Estimates on Graded Meshes with Application to Optimal Control Siam Journal on Control and Optimization. ,vol. 48, pp. 1771- 1796 ,(2009) , 10.1137/080731724