作者: N. Burq , P. Gérard , N. Tzvetkov
DOI: 10.1215/S0012-7094-07-13834-1
关键词: Geodesic 、 Laplace transform 、 Mathematical analysis 、 Geodesic curvature 、 Eigenfunction 、 Riemannian surface 、 Laplace–Beltrami operator 、 Mathematics 、 Norm (mathematics)
摘要: We give estimates for the $L^p$ norm ($2\leq p \leq +\infty$) of restriction to a curve eigenfunctions Laplace Beltrami operator on Riemannian surface. If is geodesic, we show that sphere these are sharp. has non vanishing geodesic curvature, can improve our results. also how approach apply higher dimensional manifolds.