Cumulant plots and goodness-of-fit tests for the inverse Gaussian distribution

作者: Ioannis A. Koutrouvelis , Alex Karagrigoriou

DOI: 10.1080/00949655.2010.531018

关键词: Stability (probability)Inverse Gaussian distributionApplied mathematicsRange (statistics)Goodness of fitStatisticsMathematicsLogarithmShape parameterSample size determinationParametric statistics

摘要: This paper uses a standardized version of the logarithm empirical moment generating function in order to construct plots for assessing appropriateness inverse Gaussian distribution. Variability is added by utilizing asymptotic and finite-sample results. The have linear scales do not rely on use tables or special functions. In addition, they are equivalent goodness-of-fit test whose critical values obtained from fitted equations involving sample size estimated shape parameter Three data sets used illustrate plots. A similar also proposed found through parametric bootstrap. An extensive simulation study shows that new tests maintain good stability level high power across wider range distributions sizes than other tests.

参考文章(24)
James A. Koziol, Ralph B. D'Agostino, Michael A. Stephens, Goodness-of-Fit Techniques Journal of Educational Statistics. ,vol. 12, pp. 412- ,(1987) , 10.2307/1165059
Ronald A. Fisher, Statistical methods for research workers smrw. ,(1970)
Oldrich Vasicek, A Test for Normality Based on Sample Entropy Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 38, pp. 54- 59 ,(1976) , 10.1111/J.2517-6161.1976.TB01566.X
Norbert Henze, Bernhard Klar, Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform Annals of the Institute of Statistical Mathematics. ,vol. 54, pp. 425- 444 ,(2002) , 10.1023/A:1022442506681
Rajeshwari Natarajan, Govind S Mudholkar, Moment-Based Goodness-of-Fit Tests for the Inverse Gaussian Distribution Technometrics. ,vol. 46, pp. 339- 347 ,(2004) , 10.1198/004017004000000365
M. Bameni Moghadam, F. Eskandari, Quality Improvement by Using Inverse Gaussian Model in Robust Engineering Quality & Quantity. ,vol. 40, pp. 157- 174 ,(2006) , 10.1007/S11135-005-8082-7
John R. Michael, William R. Schucany, Roy W. Haas, Generating Random Variates Using Transformations with Multiple Roots The American Statistician. ,vol. 30, pp. 88- 90 ,(1976) , 10.1080/00031305.1976.10479147
Ioannis A. Koutrouvelis, George C. Canavos, Estimation in the three-parameter gamma distribution based on the empirical moment generation function Journal of Statistical Computation and Simulation. ,vol. 59, pp. 47- 62 ,(1997) , 10.1080/00949659708811846
R. S. Chhikara, J. L. Folks, The Inverse Gaussian Distribution as a Lifetime Model Technometrics. ,vol. 19, pp. 461- 468 ,(1977) , 10.1080/00401706.1977.10489586