A Non-Commutative Extension of Abstract Integration

作者: I. E. Segal

DOI: 10.2307/1969729

关键词: AlgebraMathematicsExtension (predicate logic)Commutative property

摘要:

参考文章(11)
Irving Kaplansky, A theorem on rings of operators Pacific Journal of Mathematics. ,vol. 1, pp. 227- 232 ,(1951) , 10.2140/PJM.1951.1.227
I. E. Segal, Irreducible representations of operator algebras Bulletin of the American Mathematical Society. ,vol. 53, pp. 73- 88 ,(1947) , 10.1090/S0002-9904-1947-08742-5
John Von Neumann, On Rings of Operators. Reduction Theory The Annals of Mathematics. ,vol. 50, pp. 401- ,(1949) , 10.2307/1969463
I. E. Segal, The Two-Sided Regular Representation of a Unimodular Locally Compact Group The Annals of Mathematics. ,vol. 51, pp. 293- ,(1950) , 10.2307/1969325
I. E. Segal, Postulates for General Quantum Mechanics The Annals of Mathematics. ,vol. 48, pp. 930- ,(1947) , 10.2307/1969387
I. E. Segal, An Extension of Plancherel's Formula to Separable Unimodular Groups The Annals of Mathematics. ,vol. 52, pp. 272- ,(1950) , 10.2307/1969470
F. J. Murray, J. v. Neumann, On Rings of Operators The Annals of Mathematics. ,vol. 37, pp. 116- 229 ,(1936) , 10.2307/1968693
I. E. Segal, EQUIVALENCES OF MEASURE SPACES. American Journal of Mathematics. ,vol. 73, pp. 275- ,(1951) , 10.2307/2372178
W. Ambrose, The ₂-system of a unimodular group. I Transactions of the American Mathematical Society. ,vol. 65, pp. 27- 48 ,(1949) , 10.1090/S0002-9947-1949-0028322-1