Carbon-climate feedbacks accelerate ocean acidification

作者: Richard J. Matear , Andrew Lenton

DOI: 10.5194/BG-15-1721-2018

关键词: Surface waterEnvironmental scienceCoralCoral reefEarth system modelOcean acidificationArcticAragoniteRepresentative Concentration PathwaysAtmospheric sciences

摘要: Abstract. Carbon–climate feedbacks have the potential to significantly impact future climate by altering atmospheric CO 2 concentrations ( Zaehle et al. ,  2010 ) . By modifying concentrations, the carbon–climate will also influence ocean acidification trajectory. Here, we use emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project trajectories of acidification inclusion of carbon–climate feedbacks. We show that simulated carbon–climate can significantly impact the onset undersaturated aragonite conditions in Southern and Arctic oceans, suitable habitat for tropical coral deepwater saturation states. Under high-emissions (RCP8.5 RCP6), advance onset surface water under saturation and decline reef a decade or more. The impacts are most significant medium- (RCP4.5) low-emissions (RCP2.6) scenarios. For RCP4.5 scenario, by 2100 nearly double area water undersaturated respect reduce 50 % surface water reefs. RCP2.6 2100 reefs 40 % and increase 20 %. The sensitivity low to medium emission is important because recent emission reduction commitments trying transition such scenario. Our study highlights need better characterise carbon–climate feedbacks ensure do not underestimate projected ocean acidification.

参考文章(51)
Q. Zhang, Y. P. Wang, R. J. Matear, A. J. Pitman, Y. J. Dai, Nitrogen and phosphorous limitations significantly reduce future allowable CO2emissions Geophysical Research Letters. ,vol. 41, pp. 632- 637 ,(2014) , 10.1002/2013GL058352
Sönke Zaehle, Pierre Friedlingstein, Andrew D. Friend, Terrestrial nitrogen feedbacks may accelerate future climate change Geophysical Research Letters. ,vol. 37, ,(2010) , 10.1029/2009GL041345
K L Ricke, J C Orr, K Schneider, K Caldeira, Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections Environmental Research Letters. ,vol. 8, pp. 034003- ,(2013) , 10.1088/1748-9326/8/3/034003
RJ Matear, AC Hirst, None, Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming Global Biogeochemical Cycles. ,vol. 17, pp. n/a- n/a ,(2003) , 10.1029/2002GB001997
G. J. Boer, V. K. Arora, Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets Journal of Climate. ,vol. 26, pp. 3326- 3341 ,(2013) , 10.1175/JCLI-D-12-00365.1
SI Seneviratne, J Zscheischler, C Beer, N Buchmann, DC Frank, D Papale, A Rammig, P Smith, K Thonicke, M van der Velde, S Vicca, A Walz, M Wattenbach, Climate extremes and the carbon cycle Nature. ,vol. 500, pp. 287- 295 ,(2013) , 10.1038/NATURE12350
R. J. Matear, A. Lenton, Quantifying the impact of ocean acidification on our future climate Biogeosciences. ,vol. 11, pp. 3965- 3983 ,(2014) , 10.5194/BG-11-3965-2014
Y. P. Wang, R. M. Law, B. Pak, A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere Biogeosciences. ,vol. 7, pp. 2261- 2282 ,(2010) , 10.5194/BG-7-2261-2010
Slobodanka Stojkovic, John Beardall, Richard Matear, CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi. Journal of Phycology. ,vol. 49, pp. 670- 679 ,(2013) , 10.1111/JPY.12074
Richard J. Matear, Anthony C. Hirst, Climate change feedback on the future oceanic CO2 uptake Tellus B. ,vol. 51, pp. 722- 733 ,(1999) , 10.3402/TELLUSB.V51I3.16472