Cytonuclear Interactions and Relaxed Selection Accelerate Sequence Evolution in Organelle Ribosomes

作者: Daniel B. Sloan , Deborah A. Triant , Martin Wu , Douglas R. Taylor

DOI: 10.1093/MOLBEV/MST259

关键词: Genome evolutionPlastidRibosomal proteinPeptide sequenceBiologyMitochondrial DNAGeneticsRibosomeOrganelleNuclear gene

摘要: Many mitochondrial and plastid protein complexes contain subunits that are encoded in different genomes. In animals, nuclear-encoded proteins often exhibit rapid sequence evolution, which has been hypothesized to result from selection for mutations compensate changes interacting mutation-prone animal DNA. To test this hypothesis, we analyzed nuclear genes encoding cytosolic organelle ribosomal flowering plants. The model angiosperm genus Arabidopsis exhibits low mutation rates, typical of most Nevertheless, found (nuclear-encoded) ribosomes have higher amino acid polymorphism divergence than their counterparts ribosomes, suggesting experience relaxed functional constraint. However, the observed difference between was smaller animals could be partially attributed evolution N-terminal organelle-targeting peptides not involved ribosome function. role more directly, used transcriptomic data an (Silene) with highly variable rates genome evolution. We Silene species unusually fast-evolving DNA exhibited increased targeted organelles but those function ribosomes. Overall, these findings support hypothesis selected compensatory proteins. conclude coevolution genomic compartments within eukaryotic cell is important determinant variation

参考文章(84)
Qi Sun, Boris Zybailov, Wojciech Majeran, Giulia Friso, Paul Dominic B. Olinares, Klaas J. van Wijk, PPDB, the Plant Proteomics Database at Cornell Nucleic Acids Research. ,vol. 37, pp. 969- 974 ,(2009) , 10.1093/NAR/GKN654
W. G. HILL, ALAN ROBERTSON, The effect of linkage on limits to artificial selection. Genetics Research. ,vol. 8, pp. 269- 294 ,(1966) , 10.1017/S001667230800949X
J. H. Werren, S. Richards, C. A. Desjardins, O. Niehuis, J. Gadau, J. K. Colbourne, L. W. Beukeboom, C. Desplan, C. G. Elsik, C. J. P. Grimmelikhuijzen, P. Kitts, J. A. Lynch, T. Murphy, D. C. S. G. Oliveira, C. D. Smith, L. v. d. Zande, K. C. Worley, E. M. Zdobnov, M. Aerts, S. Albert, V. H. Anaya, J. M. Anzola, A. R. Barchuk, S. K. Behura, A. N. Bera, M. R. Berenbaum, R. C. Bertossa, M. M. G. Bitondi, S. R. Bordenstein, P. Bork, E. Bornberg-Bauer, M. Brunain, G. Cazzamali, L. Chaboub, J. Chacko, D. Chavez, C. P. Childers, J.-H. Choi, M. E. Clark, C. Claudianos, R. A. Clinton, A. G. Cree, A. S. Cristino, P. M. Dang, A. C. Darby, D. C. de Graaf, B. Devreese, H. H. Dinh, R. Edwards, N. Elango, E. Elhaik, O. Ermolaeva, J. D. Evans, S. Foret, G. R. Fowler, D. Gerlach, J. D. Gibson, D. G. Gilbert, D. Graur, S. Grunder, D. E. Hagen, Y. Han, F. Hauser, D. Hultmark, H. C. Hunter, G. D. D. Hurst, S. N. Jhangian, H. Jiang, R. M. Johnson, A. K. Jones, T. Junier, T. Kadowaki, A. Kamping, Y. Kapustin, B. Kechavarzi, J. Kim, J. Kim, B. Kiryutin, T. Koevoets, C. L. Kovar, E. V. Kriventseva, R. Kucharski, H. Lee, S. L. Lee, K. Lees, L. R. Lewis, D. W. Loehlin, J. M. Logsdon, J. A. Lopez, R. J. Lozado, D. Maglott, R. Maleszka, A. Mayampurath, D. J. Mazur, M. A. McClure, A. D. Moore, M. B. Morgan, J. Muller, M. C. Munoz-Torres, D. M. Muzny, L. V. Nazareth, S. Neupert, N. B. Nguyen, F. M. F. Nunes, J. G. Oakeshott, G. O. Okwuonu, B. A. Pannebakker, V. R. Pejaver, Z. Peng, S. C. Pratt, R. Predel, L.-L. Pu, H. Ranson, R. Raychoudhury, A. Rechtsteiner, J. G. Reid, M. Riddle, J. Romero-Severson, M. Rosenberg, T. B. Sackton, D. B. Sattelle, H. Schluns, T. Schmitt, M. Schneider, A. Schuler, A. M. Schurko, D. M. Shuker, Z. L. P. Simoes, S. Sinha, Z. Smith, A. Souvorov, A. Springauf, E. Stafflinger, D. E. Stage, M. Stanke, Y. Tanaka, A. Telschow, C. Trent, S. Vattathil, L. Viljakainen, K. W. Wanner, R. M. Waterhouse, J. B. Whitfield, T. E. Wilkes, M. Williamson, J. H. Willis, F. Wolschin, S. Wyder, T. Yamada, S. V. Yi, C. N. Zecher, L. Zhang, R. A. Gibbs, , Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. ,vol. 327, pp. 343- 348 ,(2010) , 10.1126/SCIENCE.1178028
Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di Palma, Bruce W Birren, Chad Nusbaum, Kerstin Lindblad-Toh, Nir Friedman, Aviv Regev, Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. ,vol. 29, pp. 644- 652 ,(2011) , 10.1038/NBT.1883
Robert K Jansen, Zhengqiu Cai, Linda A Raubeson, Henry Daniell, Claude W Depamphilis, James Leebens-Mack, Kai F Müller, Mary Guisinger-Bellian, Rosemarie C Haberle, Anne K Hansen, Timothy W Chumley, Seung-Bum Lee, Rhiannon Peery, Joel R McNeal, Jennifer V Kuehl, Jeffrey L Boore, Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 104, pp. 19369- 19374 ,(2007) , 10.1073/PNAS.0709121104
Joshua L. Heazlewood, Julian S. Tonti-Filippini, Alexander M. Gout, David A. Day, James Whelan, A. Harvey Millar, Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins The Plant Cell. ,vol. 16, pp. 241- 256 ,(2004) , 10.1105/TPC.016055
B. Nabholz, H. Ellegren, J. B. W. Wolf, High Levels of Gene Expression Explain the Strong Evolutionary Constraint of Mitochondrial Protein-Coding Genes Molecular Biology and Evolution. ,vol. 30, pp. 272- 284 ,(2013) , 10.1093/MOLBEV/MSS238
Laurence D. Hurst, Balázs Papp, Csaba Pál, Highly expressed genes in yeast evolve slowly Genetics. ,vol. 158, pp. 927- 931 ,(2001) , 10.1093/GENETICS/158.2.927