The Generalized Penalty-Function/Surrogate Model

作者: Harvey J. Greenberg

DOI: 10.1287/OPRE.21.1.162

关键词: Surrogate modelLagrangianPenalty methodMathematical optimizationMathematics

摘要: This paper combines the monotonic-penalty-function and surrogate models into a general model called penalty-function/surrogate model. It unifies generalizes central theorems of earlier papers, provides some new that can be specialized to Lagrangian penalty-function GLM or linear surrogates.

参考文章(8)
J. P. Evans, F. J. Gould, Stability in Nonlinear Programming Operations Research. ,vol. 18, pp. 107- 118 ,(1970) , 10.1287/OPRE.18.1.107
F. J. Gould, Extensions of Lagrange Multipliers in Nonlinear Programming SIAM Journal on Applied Mathematics. ,vol. 17, pp. 1280- 1297 ,(1969) , 10.1137/0117120
M. Bellmore, H. J. Greenberg, J. J. Jarvis, Generalized Penalty-Function Concepts in Mathematical Optimization Operations Research. ,vol. 18, pp. 229- 252 ,(1970) , 10.1287/OPRE.18.2.229
David W. Peterson, Willard I. Zangwill, Nonlinear programming : a unified approach Econometrica. ,vol. 40, pp. 411- ,(1972) , 10.2307/1909424
Harvey J. Greenberg, William P. Pierskalla, Surrogate Mathematical Programming Operations Research. ,vol. 18, pp. 924- 939 ,(1970) , 10.1287/OPRE.18.5.924
R. Brooks, A. Geoffrion, Letter to the Editor—Finding Everett's Lagrange Multipliers by Linear Programming Operations Research. ,vol. 14, pp. 1149- 1153 ,(1966) , 10.1287/OPRE.14.6.1149
Fred Glover, A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem Operations Research. ,vol. 13, pp. 879- 919 ,(1965) , 10.1287/OPRE.13.6.879