LightGBM: a highly efficient gradient boosting decision tree

作者: Tie-Yan Liu , Taifeng Wang , Thomas Finley , Weidong Ma , Qi Meng

DOI:

关键词: ComputationMathematicsScalabilityFeature DimensionMathematical optimizationProcess (computing)Feature (computer vision)Sampling (statistics)BundleGreedy algorithm

摘要: … We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional …

参考文章(23)
John C. Shafer, Rakesh Agrawal, Manish Mehta, SPRINT: A Scalable Parallel Classifier for Data Mining very large data bases. pp. 544- 555 ,(1996)
Ruoming Jin, Gagan Agrawal, Communication and Memory Efficient Parallel Decision Tree Construction. siam international conference on data mining. pp. 119- 129 ,(2003) , 10.1137/1.9781611972733.11
Tie-Yan Liu, Tao Qin, Introducing LETOR 4.0 Datasets arXiv: Information Retrieval. ,(2013)
Khaled Alsabti, Sanjay Ranka, Vineet Singh, CLOUDS: a decision tree classifier for large datasets knowledge discovery and data mining. pp. 2- 8 ,(1998)
Manish Mehta, Rakesh Agrawal, Jorma Rissanen, SLIQ: A fast scalable classifier for data mining Advances in Database Technology — EDBT '96. pp. 18- 32 ,(1996) , 10.1007/BFB0014141
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin, Parallel boosted regression trees for web search ranking Proceedings of the 20th international conference on World wide web - WWW '11. pp. 387- 396 ,(2011) , 10.1145/1963405.1963461
Jerome Friedman, Trevor Hastie, Robert Tibshirani, Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) Annals of Statistics. ,vol. 28, pp. 337- 407 ,(2000) , 10.1214/AOS/1016218223
Jerome H. Friedman, Stochastic gradient boosting Computational Statistics & Data Analysis. ,vol. 38, pp. 367- 378 ,(2002) , 10.1016/S0167-9473(01)00065-2