Quality-Driven Hierarchical Clustering Algorithm for Service Intelligence Computation

作者: Yun Wei Zhao , Chi-Hung Chi , Chen DIng

DOI: 10.1109/SKG.2011.49

关键词: Hierarchical clusteringData miningArtificial intelligenceComputer scienceCluster analysisCanopy clustering algorithmConstrained clusteringCURE data clustering algorithmBrown clusteringAlgorithmFuzzy clusteringMachine learningCorrelation clustering

摘要: Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service user's lack prior knowledge on distribution raw data, one challenge how to associate quality requirements clustering results with algorithmic output properties (e.g. number clusters be targeted). In this paper, we focus hierarchical process propose two quality-driven algorithms, HBH (homogeneity-based hierarchical) HDH (homogeneity-driven minimum acceptable homogeneity relative population each cluster their input criteria. Furthermore, also give a HDH-approximation algorithm in order address time performance issue. Experimental study data sets different density dispersion levels shows that gives best result can significantly improve execution time.

参考文章(14)
Jennifer Golbeck, Bijan Parsia, James Hendler, Trust Networks on the Semantic Web cooperative information agents. pp. 238- 249 ,(2006) , 10.1007/978-3-540-45217-1_18
Le-Hung Vu, Manfred Hauswirth, Karl Aberer, QoS-Based Service Selection and Ranking with Trust and Reputation Management Lecture Notes in Computer Science. ,vol. 3760, pp. 466- 483 ,(2005) , 10.1007/11575771_30
Khaled Alsabti, Sanjay Ranka, Vineet Singh, An efficient k-means clustering algorithm ,(1997)
Ji He, Ah-Hwee Tan, Chew-Lim Tan, Sam-Yuan Sung, On Quantitative Evaluation of Clustering Systems. Clustering and Information Retrieval. ,vol. 11, pp. 105- 133 ,(2004) , 10.1007/978-1-4613-0227-8_4
Guojun Gan, Chaoqun Ma, Jianhong Wu, None, Data Clustering: Theory, Algorithms, and Applications ,(2007)
M. Sato-Ilic, On evaluation of clustering using homogeneity analysis systems man and cybernetics. ,vol. 5, pp. 3588- 3593 ,(2000) , 10.1109/ICSMC.2000.886566
R. Mojena, Hierarchical grouping methods and stopping rules: an evaluation The Computer Journal. ,vol. 20, pp. 359- 363 ,(1977) , 10.1093/COMJNL/20.4.359
Marie Chavent, Francisco de AT de Carvalho, Yves Lechevallier, Rosanna Verde, None, New clustering methods for interval data Computational Statistics. ,vol. 21, pp. 211- 229 ,(2006) , 10.1007/S00180-006-0260-0
P. Bajcsy, N. Ahuja, Uniformity and homogeneity-based hierarchical clustering international conference on pattern recognition. ,vol. 2, pp. 96- 100 ,(1996) , 10.1109/ICPR.1996.546731