Clustering in Pattern Recognition

作者: E. Diday , G. Govaert , Y. Lechevallier , J. Sidi

DOI: 10.1007/978-94-009-8543-8_2

关键词: Computer scienceArtificial intelligenceLexicographical orderPattern recognition (psychology)Dynamic clusteringOptimization problemLogical approachFeature (machine learning)Pattern recognitionCluster analysis

摘要: We present first the main basic choices which are preliminary to any clustering and then dynamic method gives a solution family of optimization problems related those choices. show how these interfere in pattern recognition using three approaches: syntactic approach, logical approach numerical approach. For each we practical application.

参考文章(28)
R. M. Cormack, A Review of Classification Journal of the Royal Statistical Society: Series A (General). ,vol. 134, pp. 321- 353 ,(1971) , 10.2307/2344237
Azriel Rosenfeld, James P. Strong, A Grammar for Maps SEN Report Series Software Engineering. ,vol. 2, pp. 227- 239 ,(1971) , 10.1016/B978-0-12-696202-4.50020-6
E. Backer, Cluster analysis by optimal decomposition of induced fuzzy sets TU Delft, Delft University of Technology. ,(1978)
Robert A. Wagner, Michael J. Fischer, The String-to-String Correction Problem Journal of the ACM. ,vol. 21, pp. 168- 173 ,(1974) , 10.1145/321796.321811
King-Sun Fu, Shin-Yee Lu, A Clustering Procedure for Syntactic Patterns IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 7, pp. 734- 742 ,(1977) , 10.1109/TSMC.1977.4309608
Claude R. Brice, Claude L. Fennema, Scene analysis using regions Artificial Intelligence. ,vol. 1, pp. 205- 226 ,(1970) , 10.1016/0004-3702(70)90008-1
J.C. Simon, E. Backer, J. Sallantin, A structural approach of pattern recognition Signal Processing. ,vol. 2, pp. 5- 22 ,(1980) , 10.1016/0165-1684(80)90058-4
Shin-Yee Lu, King Sun Fu, A Sentence-to-Sentence Clustering Procedure for Pattern Analysis IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 8, pp. 381- 389 ,(1978) , 10.1109/TSMC.1978.4309979
Geoffrey H. Ball, David J. Hall, A clustering technique for summarizing multivariate data Behavioral Science. ,vol. 12, pp. 153- 155 ,(1967) , 10.1002/BS.3830120210