scikit-image: Image processing in Python

作者: Stéfan van der Walt , Johannes L. Schönberger , Juan Nunez-Iglesias , François Boulogne , Joshua D. Warner

DOI: 10.7717/PEERJ.453

关键词: Computer sciencePython (programming language)World Wide WebScientific programmingOpen source licenseOpen source softwareSoftware engineeringVisualizationOpen sourceImage processing

摘要: scikit-image is an image processing library that implements algorithms and utilities for use in research, education industry applications. It released under the liberal Modified BSD open source license, provides a well-documented API Python programming language, developed by active, international team of collaborators. In this paper we highlight advantages to achieve goals library, showcase several real-world applications scikit-image. More information can be found on project homepage, http://scikit-image.org.

参考文章(25)
Alan W. Paeth, PROPER TREATMENT OF PIXELS AS INTEGERS Graphics Gems. pp. 249- 256 ,(1990) , 10.1016/B978-0-08-050753-8.50054-1
S. Bradner, IETF Working Group Guidelines and Procedures RFC. ,vol. 2418, pp. 1- 26 ,(1998)
S. Harris, The Tao of IETF - A Novice's Guide to the Internet Engineering Task Force The Tao of IETF - A Novice's Guide to the Internet Engineering Task Force. ,vol. 3160, pp. 1- 38 ,(2001)
Sandrine Thuret, Lawrence DF Moon, Fred H Gage, None, Therapeutic interventions after spinal cord injury. Nature Reviews Neuroscience. ,vol. 7, pp. 628- 643 ,(2006) , 10.1038/NRN1955
John D. Hunter, Matplotlib: A 2D Graphics Environment Computing in Science and Engineering. ,vol. 9, pp. 90- 95 ,(2007) , 10.1109/MCSE.2007.55
Dimple H Bhatt, Stefanie J Otto, Brett Depoister, Joseph R Fetcho, Cyclic AMP-Induced Repair of Zebrafish Spinal Circuits Science. ,vol. 305, pp. 254- 258 ,(2004) , 10.1126/SCIENCE.1098439
Leon M. Arriola, James M. Hyman, Being Sensitive to Uncertainty Computing in Science and Engineering. ,vol. 9, pp. 10- 20 ,(2007) , 10.1109/MCSE.2007.27
Yaroslav O. Halchenko, Michael Hanke, Open is Not Enough. Let's Take the Next Step: An Integrated, Community-Driven Computing Platform for Neuroscience Frontiers in Neuroinformatics. ,vol. 6, pp. 22- 22 ,(2012) , 10.3389/FNINF.2012.00022
Martin A. Fischler, Robert C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography Communications of The ACM. ,vol. 24, pp. 381- 395 ,(1981) , 10.1145/358669.358692
Caroline A Schneider, Wayne S Rasband, Kevin W Eliceiri, NIH Image to ImageJ: 25 years of image analysis Nature Methods. ,vol. 9, pp. 671- 675 ,(2012) , 10.1038/NMETH.2089