SMOTE for Regression

作者: Luís Torgo , Rita P. Ribeiro , Bernhard Pfahringer , Paula Branco

DOI: 10.1007/978-3-642-40669-0_33

关键词: Sampling (statistics)Extreme value theoryVariable (computer science)Machine learningComputer scienceTraining setSet (abstract data type)Class imbalanceRegressionArtificial intelligenceEmpirical evidence

摘要: Several real world prediction problems involve forecasting rare values of a target variable. When this variable is nominal we have a problem of class imbalance that was already studied …

参考文章(16)
Bianca Zadrozny, Charles P. Elkan, Policy mining: learning decision policies from fixed sets of data University of California, San Diego. ,(2003)
Stan Matwin, Miroslav Kubat, Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. international conference on machine learning. pp. 179- 186 ,(1997)
Charles Elkan, The foundations of cost-sensitive learning international joint conference on artificial intelligence. pp. 973- 978 ,(2001)
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
Luis Torgo, Rita Ribeiro, Utility-Based Regression european conference on principles of data mining and knowledge discovery. pp. 597- 604 ,(2007) , 10.1007/978-3-540-74976-9_63
Luis Torgo, Rita Ribeiro, Precision and Recall for Regression discovery science. ,vol. 5808, pp. 332- 346 ,(2009) , 10.1007/978-3-642-04747-3_26
Nitesh V. Chawla, Data Mining for Imbalanced Datasets: An Overview The Data Mining and Knowledge Discovery Handbook. pp. 875- 886 ,(2005) , 10.1007/978-0-387-09823-4_45
Jesse Davis, Mark Goadrich, The relationship between Precision-Recall and ROC curves Proceedings of the 23rd international conference on Machine learning - ICML '06. ,vol. 148, pp. 233- 240 ,(2006) , 10.1145/1143844.1143874
Bianca Zadrozny, One-Benefit learning Proceedings of the 1st international workshop on Utility-based data mining - UBDM '05. pp. 53- 58 ,(2005) , 10.1145/1089827.1089834
Pedro Domingos, MetaCost: a general method for making classifiers cost-sensitive knowledge discovery and data mining. pp. 155- 164 ,(1999) , 10.1145/312129.312220