Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture

作者: Thomas Misgeld , Thomas L. Schwarz

DOI: 10.1016/J.NEURON.2017.09.055

关键词: PopulationNeuronBiologyMitophagyCell biologyAutophagyMitochondrionAxoplasmic transportSomaMitochondrial fission

摘要: Neurons have more extended and complex shapes than other cells consequently face a greater challenge in distributing maintaining mitochondria throughout their arbors. can last lifetime, but proteins turn over rapidly. Mitochondria, therefore, need constant rejuvenation no matter how far they are from the soma. Axonal transport of mitochondrial fission fusion contribute to this rejuvenation, local protein synthesis is also likely. Maintenance healthy population requires clearance damaged organelles. This involves degradation individual proteins, sequestration mitochondria-derived vesicles, organelle by mitophagy macroautophagy, some cases transfer glial cells. Both long-range processing thus at work achieving neuronal mitostasis-the maintenance an appropriately distributed pool for duration neuron's life. Accordingly, defects processes that support mitostasis significant contributors neurodegenerative disorders.

参考文章(142)
Ira E. Clark, Mark W. Dodson, Changan Jiang, Joseph H. Cao, Jun R. Huh, Jae Hong Seol, Soon Ji Yoo, Bruce A. Hay, Ming Guo, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. ,vol. 441, pp. 1162- 1166 ,(2006) , 10.1038/NATURE04779
Hao Wu, John Williams, Jeremy Nathans, Complete morphologies of basal forebrain cholinergic neurons in the mouse eLife. ,vol. 3, ,(2014) , 10.7554/ELIFE.02444
Katherine Labbé, Andrew Murley, Jodi Nunnari, Determinants and functions of mitochondrial behavior Annual Review of Cell and Developmental Biology. ,vol. 30, pp. 357- 391 ,(2014) , 10.1146/ANNUREV-CELLBIO-101011-155756
Diane T.W. Chang, Ian J. Reynolds, Mitochondrial trafficking and morphology in healthy and injured neurons Progress in Neurobiology. ,vol. 80, pp. 241- 268 ,(2006) , 10.1016/J.PNEUROBIO.2006.09.003
Victor S. Van Laar, Beth Arnold, Steven J. Cassady, Charleen T. Chu, Edward A. Burton, Sarah B. Berman, Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization Human Molecular Genetics. ,vol. 20, pp. 927- 940 ,(2011) , 10.1093/HMG/DDQ531
Song Liu, Tomoyo Sawada, Seongsoo Lee, Wendou Yu, George Silverio, Philomena Alapatt, Ivan Millan, Alice Shen, William Saxton, Tomoko Kanao, Ryosuke Takahashi, Nobutaka Hattori, Yuzuru Imai, Bingwei Lu, Parkinson's Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria PLOS Genetics. ,vol. 8, ,(2012) , 10.1371/JOURNAL.PGEN.1002537
Xinnan Wang, Dominic Winter, Ghazaleh Ashrafi, Julia Schlehe, Yao Liang Wong, Dennis Selkoe, Sarah Rice, Judith Steen, Matthew J. LaVoie, Thomas L. Schwarz, PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility Cell. ,vol. 147, pp. 893- 906 ,(2011) , 10.1016/J.CELL.2011.10.018
Jin-Mi Heo, Alban Ordureau, Joao A. Paulo, Jesse Rinehart, J. Wade Harper, The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell. ,vol. 60, pp. 7- 20 ,(2015) , 10.1016/J.MOLCEL.2015.08.016
Jordi Magrané, Czrina Cortez, Wen-Biao Gan, Giovanni Manfredi, Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models Human Molecular Genetics. ,vol. 23, pp. 1413- 1424 ,(2014) , 10.1093/HMG/DDT528
Kyle E Miller, Michael P Sheetz, Axonal mitochondrial transport and potential are correlated. Journal of Cell Science. ,vol. 117, pp. 2791- 2804 ,(2004) , 10.1242/JCS.01130