Almost Periodic Solutions for Wilson-Cowan Type Model with Time-Varying Delays

作者: Shasha Xie , Zhenkun Huang

DOI: 10.1155/2013/683091

关键词: Neuronal populationMathematicsLyapunov functionalApplied mathematicsType (model theory)Contraction mappingComplement (set theory)Exponential stabilityMathematical analysis

摘要: Wilson-Cowan model of neuronal population with time-varying delays is considered in this paper. Some sufficient conditions for the existence and delay-based exponential stability a unique almost periodic solution are established. The approaches based on constructing Lyapunov functionals well-known Banach contraction mapping principle. results new, easily checkable, complement existing ones.

参考文章(16)
Zhenkun Huang, S. Mohamad, Xinghua Wang, Chunhua Feng, Multi-almost periodicity and invariant basins of general neural networks under almost periodic stimuli arXiv: Dynamical Systems. ,(2009) , 10.1002/CTA.490
H. R. Wilson, J. D. Cowan, A Mathematical Theory of the Functional Dynamics of Cortical and Thalamic Nervous Tissue Kybernetika. ,vol. 13, pp. 55- 80 ,(1973) , 10.1007/BF00288786
C. v. Vreeswijk, H. Sompolinsky, Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity Science. ,vol. 274, pp. 1724- 1726 ,(1996) , 10.1126/SCIENCE.274.5293.1724
Zhenkun Huang, Sannay Mohamad, Xinghua Wang, Chunhua Feng, None, Convergence analysis of general neural networks under almost periodic stimuli International Journal of Circuit Theory and Applications. ,vol. 37, pp. 723- 750 ,(2009) , 10.1002/CTA.V37:6
Hugh R. Wilson, Jack D. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons Biophysical Journal. ,vol. 12, pp. 1- 24 ,(1972) , 10.1016/S0006-3495(72)86068-5
R. Decker, V. W. Noonburg, A Periodically Forced Wilson–Cowan System with Multiple Attractors Siam Journal on Mathematical Analysis. ,vol. 44, pp. 887- 905 ,(2012) , 10.1137/110823365
Yiguang Liu, Zhisheng You, Multi-stability and almost periodic solutions of a class of recurrent neural networks Chaos, Solitons & Fractals. ,vol. 33, pp. 554- 563 ,(2007) , 10.1016/J.CHAOS.2006.01.081
B. Pollina, D. Benardete, V. W. Noonburg, A Periodically Forced Wilson--Cowan System Siam Journal on Applied Mathematics. ,vol. 63, pp. 1585- 1603 ,(2003) , 10.1137/S003613990240814X
Kari Mantere, Jussi Parkkinen, Timo Jaaskelainen, Madan M. Gupta, Wilson—Cowan Neural-Network Model in Image Processing Journal of Mathematical Imaging and Vision. ,vol. 2, pp. 155- 163 ,(1992) , 10.1007/978-1-4615-3148-7_11