Fluctuations of parabolic equations with large random potentials

作者: Yu Gu , Guillaume Bal

DOI: 10.1007/S40072-014-0040-8

关键词: Martingale (probability theory)MathematicsAsymptotic distributionMartingale central limit theoremNumerical analysisParabolic partial differential equationPartial differential equationWeak convergenceHomogenization (chemistry)Mathematical analysis

摘要: In this paper, we present a fluctuation analysis of type parabolic equations with large, highly oscillatory, random potentials around the homogenization limit. With Feynman–Kac representation, Kipnis–Varadhan’s method, and quantitative martingale central limit theorem, derive asymptotic distribution rescaled error between heterogeneous homogenized solutions under different assumptions in dimension \(d\ge 3\). The results depend on whether stationary corrector exits.

参考文章(35)
V. V. Yurinskii, Averaging of symmetric diffusion in random medium Siberian Mathematical Journal. ,vol. 27, pp. 603- 613 ,(1987) , 10.1007/BF00969174
Yu Gu, Guillaume Bal, An invariance principle for Brownian motion in random scenery Electronic Journal of Probability. ,vol. 19, pp. 1- 19 ,(2014) , 10.1214/EJP.V19-2894
Bogdan Iftimie, Étienne Pardoux, Andrey Piatnitski, Homogenization of a singular random one-dimensional PDE Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 44, pp. 519- 543 ,(2008) , 10.1214/07-AIHP134
S M Kozlov, AVERAGING OF RANDOM OPERATORS Mathematics of The Ussr-sbornik. ,vol. 37, pp. 167- 180 ,(1980) , 10.1070/SM1980V037N02ABEH001948
Stefan Neukamm, Felix Otto, Antoine Gloria, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations Mathematical Modelling and Numerical Analysis. ,vol. 48, pp. 325- 346 ,(2014) , 10.1051/M2AN/2013110
Jean-Christophe Mourrat, Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients Probability Theory and Related Fields. ,vol. 160, pp. 279- 314 ,(2014) , 10.1007/S00440-013-0529-5
Yu Gu, Guillaume Bal, Random homogenization and convergence to integrals with respect to the Rosenblatt process Journal of Differential Equations. ,vol. 253, pp. 1069- 1087 ,(2012) , 10.1016/J.JDE.2012.05.007
James Nolen, Normal approximation for a random elliptic equation Probability Theory and Related Fields. ,vol. 159, pp. 661- 700 ,(2014) , 10.1007/S00440-013-0517-9
Guillaume Bal, Josselin Garnier, Yu Gu, Wenjia Jing, Corrector theory for elliptic equations with long-range correlated random potential Asymptotic Analysis. ,vol. 77, pp. 123- 145 ,(2012) , 10.3233/ASY-2011-1072
A. Gloria, S. Neukamm, F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics Inventiones mathematicae. ,vol. 199, pp. 455- 515 ,(2015) , 10.1007/S00222-014-0518-Z