作者: Franz Baader , Baris Sertkaya
DOI: 10.1007/978-3-540-24651-0_24
关键词: Semantic context 、 Discrete mathematics 、 Point (geometry) 、 Formal concept analysis 、 Lattice Miner 、 Hierarchy 、 Mathematics 、 Description logic 、 Finite set
摘要: Given a finite set \(\mathcal{C} := \{ C_1, \ldots, C_n\}\) of description logic concepts, we are interested in computing the subsumption hierarchy all least common subsumers subsets \(\mathcal{C}\) as well conjunctions \(\mathcal{C}\). These hierarchies can be used to support bottom-up construction knowledge bases. The point is compute first without having subsumer for \(\mathcal{C}\), and second check possible pairs such explicitly subsumption. We will show that methods from formal concept analysis developed lattices employed this purpose.