作者: Ricardo A. Daziano , Taha Hossein Rashidi , Michel Bierlaire , Prateek Bansal , Rico Krueger
DOI:
关键词: Unavailability 、 Bayes estimator 、 Statistics 、 Kernel (statistics) 、 Mathematics 、 Multinomial logistic regression 、 Sampling (statistics) 、 Gibbs sampling 、 Logit 、 Conjugate prior
摘要: The standard Gibbs sampler of Mixed Multinomial Logit (MMNL) models involves sampling from conditional densities utility parameters using Metropolis-Hastings (MH) algorithm due to unavailability conjugate prior for logit kernel. To address this non-conjugacy concern, we propose the application Polygamma data augmentation (PG-DA) technique MMNL estimation. posterior estimates augmented and default are similar two-alternative scenario (binary choice), but encounter empirical identification issues in case more alternatives ($J \geq 3$).