Bladder Cancer Specific Pathway Interaction Networks

作者: Qinxin Pan , Angeline S. Andrew , Jason H. Moore , Ting Hu , Margaret R. Karagas

DOI:

关键词: BiologyOn pathwayPhenotypeComputational biologyBladder cancerPathway analysis

摘要: With the development of high-throughput technologies, monitoring biological systems comprehensively has became feasible and affordable. However, transition from highthroughput data to underlying biology various phenotypes remains challenging. Pathway analysis identifies processes that are associated with a particular phenotype, which provides insights into mechanisms. Therefore, pathway popular tool for analyzing data. Most existing methods based on simple assumption pathways act in isolation whereas they cooperate each other complex manner. In this study, we focus interactions bladder cancer risk. We identify disease-specific pathway-pathway SNP-SNP gene-gene coexpression relationships. By structure interaction networks, highlight “central” should be further studied.

参考文章(35)
Eric E. Schadt, Stephen H. Friend, David A. Shaywitz, A network view of disease and compound screening Nature Reviews Drug Discovery. ,vol. 8, pp. 286- 295 ,(2009) , 10.1038/NRD2826
Linton C. Freeman, A Set of Measures of Centrality Based on Betweenness Sociometry. ,vol. 40, pp. 35- 41 ,(1977) , 10.2307/3033543
John P. T. Higgins, Gulsah Kaygusuz, Lingli Wang, Kelli Montgomery, Veronica Mason, Shirley X. Zhu, Robert J. Marinelli, Joseph C. Presti, Matt van de Rijn, James D. Brooks, Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. The American Journal of Surgical Pathology. ,vol. 31, pp. 673- 680 ,(2007) , 10.1097/01.PAS.0000213438.01278.5F
S. Bandyopadhyay, M. Mehta, D. Kuo, M.-K. Sung, R. Chuang, E. J. Jaehnig, B. Bodenmiller, K. Licon, W. Copeland, M. Shales, D. Fiedler, J. Dutkowski, A. Guenole, H. van Attikum, K. M. Shokat, R. D. Kolodner, W.-K. Huh, R. Aebersold, M.-C. Keogh, N. J. Krogan, T. Ideker, Rewiring of genetic networks in response to DNA damage Science. ,vol. 330, pp. 1385- 1389 ,(2010) , 10.1126/SCIENCE.1195618
Ryan Kelley, Trey Ideker, Systematic interpretation of genetic interactions using protein networks Nature Biotechnology. ,vol. 23, pp. 561- 566 ,(2005) , 10.1038/NBT1096
Réka Albert, Albert-László Barabási, Eric Bonabeau, Scale-Free Networks Scientific American. ,vol. 288, pp. 60- 69 ,(2003) , 10.1038/SCIENTIFICAMERICAN0503-60
Joel N. Hirschhorn, Genomewide association studies--illuminating biologic pathways. The New England Journal of Medicine. ,vol. 360, pp. 1699- 1701 ,(2009) , 10.1056/NEJMP0808934
Ting Hu, Nicholas A Sinnott-Armstrong, Jeff W Kiralis, Angeline S Andrew, Margaret R Karagas, Jason H Moore, Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics. ,vol. 12, pp. 364- 364 ,(2011) , 10.1186/1471-2105-12-364
John P. Murnane, Telomere dysfunction and chromosome instability Mutation Research. ,vol. 730, pp. 28- 36 ,(2012) , 10.1016/J.MRFMMM.2011.04.008
Ruth Isserlin, Daniele Merico, Rasoul Alikhani-Koupaei, Anthony Gramolini, Gary D. Bader, Andrew Emili, Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps Proteomics. ,vol. 10, pp. 1316- 1327 ,(2010) , 10.1002/PMIC.200900412