A data-based mechanistic modelling approach to real-time flood forecasting

作者: Keith John Beven

DOI:

关键词: Operations researchFlood forecastingComputer science

摘要:

参考文章(28)
G. E. P. Box, D. R. Cox, An Analysis of Transformations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 26, pp. 211- 243 ,(1964) , 10.1111/J.2517-6161.1964.TB00553.X
Peter C. Young, Data-based mechanistic modelling and river flow forecasting IFAC Proceedings Volumes. ,vol. 39, pp. 756- 761 ,(2006) , 10.3182/20060329-3-AU-2901.00118
Keith J. Beven, David T. Leedal, Paul J. Smith, Peter C. Young, Identification and Representation of State Dependent Non-linearities in Flood Forecasting Using the DBM Methodology Springer, London. pp. 341- 366 ,(2012) , 10.1007/978-0-85729-974-1_17
Peter C. Young, Real‐Time Updating in Flood Forecasting and Warning Wiley‐Blackwell. pp. 163- 195 ,(2010) , 10.1002/9781444324846.CH9
Renata Romanowicz, Keith Beven, Florian Pappenberger, Peter Young, Micha Werner, THE UNCERTAINTY CASCADE IN FLOOD FORECASTING ,(2006)
Hamid Moradkhani, Kuo‐Lin Hsu, Hoshin Gupta, Soroosh Sorooshian, None, Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter Water Resources Research. ,vol. 41, pp. 1- 17 ,(2005) , 10.1029/2004WR003604
F. Schweppe, Evaluation of likelihood functions for Gaussian signals IEEE Transactions on Information Theory. ,vol. 11, pp. 61- 70 ,(1965) , 10.1109/TIT.1965.1053737
Konda Thirumalaiah, Makarand C. Deo, Hydrological Forecasting Using Neural Networks Journal of Hydrologic Engineering. ,vol. 5, pp. 180- 189 ,(2000) , 10.1061/(ASCE)1084-0699(2000)5:2(180)