Lipids in Mammalian Hibernation and Artificial Hypobiosis

作者: I. K. Kolomiytseva

DOI: 10.1134/S0006297911120029

关键词: Cell biologyHibernationCholesterolTorporOrganelleMembraneBiochemistryLipid metabolismPhospholipidBiologyEctotherm

摘要: Membrane lipids-phospholipids, fatty acids, and cholesterol-participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes membrane viscosity caused by the degree acids unsaturation, cholesterol/phospholipids ratio, phospholipid composition. Studies endotherms (mammals birds) revealed regulatory role lipids hibernation. Cholesterol participate regulation parameters torpor, gene expression, activity enzymes lipid metabolism. Some metabolism during artificial natural hypobiosis, namely, increased concentration cholesterol blood decreased neocortex, are analogous to those observed under stress conditions coincide with mammalian nonspecific reactions environmental agents. It is shown that effects hypobiosis on composition cell membranes different. Changes cause morphology The effect organelles specific seems be defined signaling systems. Comparative study promising for elucidation mammals low ambient temperatures.

参考文章(51)
Gustavo Fuertes, Diana Giménez, Santi Esteban-Martín, Ana J. García-Sáez, Orlando Sánchez, Jesús Salgado, Role of membrane lipids for the activity of pore forming peptides and proteins Advances in Experimental Medicine and Biology. ,vol. 677, pp. 31- 55 ,(2010) , 10.1007/978-1-4419-6327-7_4
G.Causey Whittow, EVOLUTION OF THERMOREGULATION Comparative Physiology of Thermoregulation#R##N#Special Aspects of Thermoregulation. pp. 201- 258 ,(1973) , 10.1016/B978-0-12-747603-2.50011-4
S. Ė. Shnolʹ, The physicochemical factors of biological evolution Harwood Academic. ,(1981)
Animal adaptation to cold Springer Berlin Heidelberg. ,(1989) , 10.1007/978-3-642-74078-7
SS Goldman, Cold resistance of the brain during hibernation. III. Evidence of a lipid adaptation. American Journal of Physiology. ,vol. 228, pp. 834- 838 ,(1975) , 10.1152/AJPLEGACY.1975.228.3.834
Peter G. Osborne, Masaaki Hashimoto, Mammalian cerebral metabolism and amino acid neurotransmission during hibernation. Journal of Neurochemistry. ,vol. 106, pp. 1888- 1899 ,(2008) , 10.1111/J.1471-4159.2008.05543.X
Jinping Chen, Lihong Yuan, Min Sun, Libiao Zhang, Shuyi Zhang, Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation. Comparative Biochemistry and Physiology B. ,vol. 149, pp. 388- 393 ,(2008) , 10.1016/J.CBPB.2007.10.011
HANNAH V. CAREY, MATTHEW T. ANDREWS, SANDRA L. MARTIN, Mammalian Hibernation: Cellular and Molecular Responses to Depressed Metabolism and Low Temperature Physiological Reviews. ,vol. 83, pp. 1153- 1181 ,(2003) , 10.1152/PHYSREV.00008.2003
D. J. Pehowich, P. M. Macdonald, R. N. McElhaney, A. R. Cossins, L. C. H. Wang, Calorimetric and spectroscopic studies of lipid thermotropic phase behavior in liver inner mitochondrial membranes from a mammalian hibernator. Biochemistry. ,vol. 27, pp. 4632- 4638 ,(1988) , 10.1021/BI00413A008