Experimental evidence of chaotic states in the Belousov–Zhabotinskii reaction

作者: R. A. Schmitz , K. R. Graziani , J. L. Hudson

DOI: 10.1063/1.435267

关键词: Range (particle radiation)ChaoticChemistryChemical physics

摘要: Experimental results are reported which show strong evidence that the Belousov–Zhabotinskii reaction proceeds in an intrinsic chaotic (sustained time‐dependent, nonperiodic) manner over a range of residence times continuous‐flow stirred reactor. Outside experimental states reach sustained periodic condition some cases and stable steady nonperiodic others. A suggested theoretical basis for observed behavior is discussed.

参考文章(10)
Manfred Rössler, Armin Schmidt, Zur Umsetzung von Trichloracetimidsäuremethylester mit Antimon(V)-chlorid. Zeitschrift für Naturforschung B. ,vol. 31, pp. 1078- 1081 ,(1976) , 10.1515/ZNB-1976-0816
Richard J. Field, Endre Koros, Richard M. Noyes, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system Journal of the American Chemical Society. ,vol. 94, pp. 8649- 8664 ,(1972) , 10.1021/JA00780A001
K.R. Graziani, J.L. Hudson, R.A. Schmitz, The Belousov—Zhabotinskii reaction in a continuous flow reactor The Chemical Engineering Journal. ,vol. 12, pp. 9- 21 ,(1976) , 10.1016/0300-9467(76)80013-5
Otto E. Rössler, Chemical Turbulence: Chaos in a Simple Reaction-Diffusion System Zeitschrift für Naturforschung A. ,vol. 31, pp. 1168- 1172 ,(1976) , 10.1515/ZNA-1976-1006
Robert M. May, George F. Oster, Bifurcations and Dynamic Complexity in Simple Ecological Models The American Naturalist. ,vol. 110, pp. 573- 599 ,(1976) , 10.1086/283092
G. B. Kolata, Cascading bifurcations: the mathematics of chaos. Science. ,vol. 189, pp. 984- 985 ,(1975) , 10.1126/SCIENCE.189.4207.984
Robert M. May, Simple mathematical models with very complicated dynamics Nature. ,vol. 261, pp. 459- 467 ,(1976) , 10.1038/261459A0